The Evolution of the Black-White Test Score Gap in
Grades K-3: The Fragility of Results*

Timothy N. Bond† Kevin Lang‡

August 16, 2012

Abstract

Although both economists and psychometricians typically treat them as interval scales, test scores are reported using ordinal scales. Using the Early Childhood Longitudinal Study and the Children of the National Longitudinal Survey of Youth, we examine how order-preserving scale transformations affect the evolution of the black-white reading test score gap from kindergarten entry through third grade. Plausible transformations reverse the growth of the gap in the CNLSY and greatly reduce it in the ECLS-K during the early school years. All growth from entry through first grade and a nontrivial proportion from first to third grade probably reflects scaling decisions. JEL codes: I24, J15

*We are grateful to Henry Braun, Sandy Jencks, Dan Koretz, Sunny Ladd, Ed Lazear, Michael Manove, Dick Murnane, Sean Reardon, Bruce Spencer, an anonymous referee, the editor and participants in seminars and workshops at Baruch College, Boston University, Brown, CERGE-EI, Sciences Po and Stanford for helpful comments and suggestions. The usual caveat applies.
†Department of Economics, Krannert School of Management, Purdue University, 403 W. State Street, West Lafayette, IN 47907; email: tnbond@purdue.edu
‡Department of Economics, Boston University, 270 Bay State Road, Boston, MA 02215; email:lang@bu.edu
1 Introduction

Economists who use test scores in their analyses have largely treated them as interval scales (like temperature). In reality, test scores are measured on ordinal scales (like utils). As with utility functions, any monotonic transformation of the test score scale is also potentially a valid scale. Surprisingly, there has been little attention to this issue among economists although there are some exceptions. Lang (2010) raises concerns about ordinality in the context of value-added measurement. Cascio and Staiger (2012) consider how changes in scaling affect estimates of the fade-out of teacher value-added. As discussed in greater detail in the conclusion, similar concerns arise in the happiness literature.

In utility theory, the solution to the absence of an interval scale is to monetize the scale. We calculate how much money the individual would need to be compensated to give up some good or the monetary equivalent of receiving that good. In contrast, economists have largely ignored the ordinality of test scores.

There are at least four potential responses to this ordinality:

1. Assume that we know a great deal about the distribution of the underlying latent variable that test scores measure. If we are willing to make strong assumptions about the relation between “ability” and the probability of answering questions correctly, then we can measure ability up to a linear transformation. As discussed in section three, this is the approach used by a minority of researchers in the educational measurement field.

2. Put strong restrictions on the ability distribution, If we believe that ability is normally distributed, then we can choose the scale that results in a test-score distribution that
best approximates the normal. We, at least, do not have strong priors about this
distribution. Of course, the central limit theorem does explain why many phenomena
in the real world have normal distributions. But many economists equate earnings with
skill, and earnings are very skewed, and the wealth distribution is even more skewed.
It is possible that the ability distribution is similarly skewed or skewed in the opposite
direction.

3. Relate the test score to some desired or undesired outcome. If, for example, we care
about the black-white test score gap because it affects adult outcomes, then it makes
sense, data permitting, to relate test scores to these outcomes as in Cunha and Heckman
(2008) and Cunha, Heckman and Schennach (2010). In general, the children in our
sample are too young to permit us to base our scale on adult outcomes, but we do
choose scales which maximize the ability of earlier scores to predict performance on
later tests. In most cases this approach suggests little growth in the gap between
kindergarten and first grade but a significant widening of the gap by third grade.
However, one such scale suggests no growth between kindergarten and third grade.

4. Simply accept it and limit ourselves to conclusions that can be reached regardless of
choice of scale. This is largely the approach we follow in this paper. Unfortunately, this
puts only weak bounds on how the test score gap evolves. Without additional restric-
tions, we can conclude only that the change in the black-white test score gap between
kindergarten and third grade is somewhere between 0 and .6 standard deviations.

Our findings should be placed in the context of the debate over when the black-white
test score gap emerges and how it evolves during the school years. In their influential and
controversial studies, Fryer and Levitt (2004, 2006) challenge the accepted view that a large black-white test score gap emerges in early childhood (Jencks and Phillips, 1998). They find that the gap in kindergarten is both modest and largely “explained” by a small number of socioeconomic characteristics but widens sharply in the early years of schooling.1 Murnane et al (2006) ask why the Fryer/Levitt result differs from prior findings and conclude that it is because they use a different test.

The extent to which family background, environmental measures and parental behaviors can explain the test score gap is also controversial. This is in part because the influence of such factors varies among data sets2 and in part because of conceptual issues. Jensen (1969) argues that controlling for such factors is subject to the “sociological fallacy:” family background may include heritable factors. Dickens and Flynn (2001) argue that the environment is endogenous to ability (for example, students who appear to have high cognitive ability may be placed in more challenging classes).

Despite these caveats, we also examine the relation between family background and the test score gap. The inability of family background to explain the growth in the gap is suggestive evidence that schools play a large role in the widening of the gap. It is therefore important to determine whether this conclusion is robust to choice of scale. Most of the scales we derive show similar growth in the adjusted test score gap, but there is one notable exception which reduces the estimated growth in the gap between kindergarten entry and third grade. Perhaps most strikingly although our scales provide quite different estimates of the unadjusted gaps at entry and in third grade, there is almost no difference in the adjusted gaps at entry and only modest variation in the adjusted gaps in third grade. Thus the scales lead to very different conclusions about the importance of socioeconomic factors in
“accounting for” the racial test score gap and its growth.

In the next section, we show numerical examples of how scaling decisions can be important in interpreting the test gap. In section three, we provide a short primer on item response theory scales which some researchers claim are interval scales. We then describe the data used for this study (section four) and present our approach (section five). Finally, we give our results in section six and then provide some concluding remarks in which we discuss the use of ordinal scales more broadly.

2 Scaling Issues

For ease of exposition, we begin with a scale that takes a small number of discrete values. We trust, however, that it will be apparent that the issues we raise apply to continuous scales.

Suppose that we have a very good test that is able to determine whether an individual has mastered each of three progressively difficult skills. We assume that the skills are cumulative either because skills are simply learned in this order or because skill 2 cannot be mastered before skill 1 (two-digit addition requires one-digit addition) and that there is no partial mastery. Such a test would produce scores of a (no skills mastered), b (only skill 1 mastered), c (skills 1 and 2 mastered) and d (all three skills mastered).

It might seem natural to assign the values 0, 1, 2 and 3 to these scores since these values correspond to the number of skills the individual has mastered. But there is no reason that the marginal value of all three skills should be equal. Skill 1 might be the ability to recite the alphabet, 2 the ability to recognize letters and 3 to read. Or skill 1 might be the ability to read and write English, skill 2 the ability to read and write Latin and skill 3 the ability
to converse fluently in Latin. In the latter case, as economists, we are inclined to view the marginal value of 1 as much greater than that of 2 which is in turn much greater than 3, but there are surely other admissible scales.

Suppose we have a sample of twenty blacks and twenty whites. In each case, two people receive scores of a and two scores of d. Overall, however, blacks do worse than whites. Of the remaining 16 blacks, 14 get a b and two get a c, while among whites the figures are two b and fourteen c.

If we use the naive scale, 0,1,2,3, then the difference in the means is .6 or about .73 standard deviations.

The theoretical lower limit is reached by making the gap between b and c arbitrarily small or, equivalently, sending a and d to minus and plus infinity. In this case, there is no gap since the total number of blacks and whites with a score of either b or c is identical.

At the other extreme, if we treat a and b and c and d as essentially equal, then we get a gap of 1.20 standard deviations. Without some external reference for determining the proper scale, all we can say is that the test-score gap is somewhere between 0 and 1.20 standard deviations. Of course, in some cases such an external standard may exist. Cunha, Heckman and Schennach (2010) tie a variety of objective and subjective measures of cognitive and noncognitive ability to later adult outcomes. More generally, test scores can be tied to other measures of performance.

The situation becomes, if anything, more difficult when we attempt to determine whether the gap increases or decreases as children progress through school. We suppose again that our testing situation is ideal. A year later, we administer a very similar (in jargon, *vertically linked*) test so that a score on the second test is fully equivalent to that same score on the
first test. Suppose further that on administering the second test, we observe that within each race/performance level, half of the individuals advanced exactly one level so that there is now one black and one white at each of levels \(a \) and \(e \).

If we follow the “natural” scale and assign consecutive integers to the levels so that an \(e \) corresponds to a scaled score of 4, then the test-score gap remains at .6, but declines to .62 within-grade standard deviations because the within-grade variance has increased. In contrast, suppose that we believe that over the two tests, the score distribution should be approximately normal. Then we would assign scaled scores of \(-1.89, -.75, .27, 1.27, 2.34\). The scaled-score gap would be virtually unchanged at roughly .61 in both periods, but because the variance of the scaled scores would have declined, the gap as a proportion of the standard deviation would grow from .61 to .72. This is similar to the situation documented in Murnane et al (2006) where the gap using the test scale remains constant but the gap as a proportion of the standard deviation grows.

The scale that minimizes the level of growth in this example is to set the scores for \(b \), \(c \), \(d \) to be approximately equal. Any scale that sets \(b \) and \(c \) equal creates a gap of 0 on the first test, while any scale that sets \(b \), \(c \), and \(d \) equal creates a gap of 0 on the second test. With both gaps equal to 0, there is no growth in the gap between the two tests. The scale that maximizes the level of growth sets \(a \), \(b \), and \(c \) and \(d \) and \(e \) as approximately equal. Again, with \(b \) and \(c \) being approximately equal, we have no gap on the first test, however this arrangement gives the upper bound on the second test of 1.39. All we can say, therefore, is that the growth of the racial test gap between the two tests is somewhere between 0 and 1.39 standard deviations.
3 Some Background on Educational Measurement

When we have presented early versions of this paper in seminars, we have sometimes been asked how people in the educational measurement field have responded to it. The simple answer is “with much kindness and patience for the gaps in our knowledge.” Several extremely helpful experts are mentioned in the acknowledgements. One person who told us that he had discussed the paper with a number of other people in the field reported that the reactions were divided between “that is deeply disturbing” and “that cannot be important.” A few have implied that we underappreciated the degree to which psychometricians are aware of the issues we raise, an error that we attempt to correct in this section. But none has suggested that test scores are, in fact, measured on interval scales. A distinct minority of researchers in the field believe that certain scales are interval scales, but either they did not read our earlier drafts, or they did not bother to correspond with us.3

The concern that test scores are ordinal scales is long-standing. The earliest reference we have been able to find is Stevens (1946). Among the giants of the testing field, Thorndike (1966, p. 124) makes the point emphasized in this article: “… it is assumed that the numerals in which the variables are expressed represent equal increments in some attribute. It is also recognized that this assumption is usually not well supported. But for ‘rough and ready’ studies of relationship, the violation of the assumption usually does not hurt much. However, when starting to deal with something as fragile as a change score, the violation of this basic assumption becomes a good deal more critical.”

In this section, we provide a brief primer on item response theory (IRT) scaling so that the economists and others can have a better understanding of why some researchers might
believe that it generates interval scales. We then briefly discuss how the ordinality of IRT (and other) scales has been addressed. We again thank our tutors for their help and absolve them of responsibility for our errors. Readers who are familiar with the relevant literature or who do not care about it can skip this section. We refer readers who want more detail to Baker (2001).

IRT models are defined by their number of parameters. Across all models, questions are identified by a difficulty parameter b, while individuals vary by a parameter θ. The goal of IRT is to estimate θ for each test-taker.

Starting with the three-parameter logistic IRT model, the probability that a student i will answer question q correctly is given by

$$p_{iq} = c_q + (1 - c_q) \frac{1}{1 + e^{-a_q(\theta_i - b_q)}}.$$ \(1\)

c captures the guessability of the question. It is the probability that a student of extremely low ability will get the answer right. When this probability is negligible, $c = 0$, and we arrive at the two-parameter IRT model:

$$p_{iq} = \frac{1}{1 + e^{-a_q(\theta_i - b_q)}}.$$ \(2\)

Then a student with $\theta_i = b_q$ is one who will get a question of difficulty b_q right exactly half the time. a measures how well the question distinguishes among students of different abilities. If $a = \infty$, it distinguishes perfectly between those with $\theta > b$ and those with $\theta < b$.

It is universally recognized that the parameters are defined only up to a linear transfor-
mation. Adding the same constant to θ and b or multiplying θ and b and dividing a by the same constant does not change p. We can normalize the scale by, for example, setting the mean to be 100 and the standard deviation to be 15. Some authors claim that θ is *uniquely* identified given this normalization. The argument seems to be that given this normalization and adequate data, the θ_i are unique.

However, as discussed by Lloyd (1975), one of the fathers of IRT, if $\theta'_i = f(\theta_i)$ where f is a strictly increasing monotonic function, then

$$p_{iq} = \frac{1}{1 + e^{-a_q(f^{-1}(\theta'_i) - b_q)}}$$

(3)

also fits the data with the same likelihood. As noted, most psychometricians accept Lloyd’s argument.

In the special case where all questions are equally informative, a can be normalized to 1. This leads to the one parameter IRT model or Rasch scale,

$$\ln \frac{p_{iq}}{1 - p_{iq}} = \theta_i - b_q.$$

(4)

Thus regardless of the difficulty of a question, a one unit increase in θ increases the log odds of getting the answer correct by 1. As a result, it is more common among individuals in the field to believe that Rasch scales can be interpreted as interval scales.5

Like many economists, noneconomists frequently ignore the complexities associated with working with interval scales. However, as early as 1983, Spencer pointed out that the performance of two groups can only by strictly ranked if the cumulative distribution functions
(cdf) of their scores do not cross (one is higher than the other in the sense of first-order stochastic dominance) and suggested comparisons based on these cdfs.

One common solution uses measures based on percentile ranks rather than test scores since percentiles are invariant to scale. However, percentiles are also a monotonic transformation of the scale, one in which the value placed between ranks is constant across the distribution. The most prominent percentile-based measure is the percentile-percentile (PP) curve.\(^6\) This method plots the percentile associated with a given score for one group (typically the lower performer) against the percentile associated with that score for the other. If the PP curve does not cross the 45 degree line, the scores of one group are lower than the other in the sense of stochastic dominance. If one PP curve lies above another, the gap appears to be smaller for the comparison captured by the higher curve. Likewise, if the PP curves are identical, it would appear that the gaps are also identical.\(^7\)

Unfortunately, as the following example shows, the conclusion from analysis of shifts (or lack thereof) of the PP curve can be misleading. Consider a vertically linked test administered twice to three black and three white children. The test has 5 possible scores which, to emphasize the absence of an interval scale, we denote \(a, b, c, d\) and \(e\). When the test is first administered, the three white children initially score \(a, c,\) and \(e\) while two black children score \(a\) and one black child scores \(b\). One year later the white children score \(b, d,\) and \(e\), while two black children score \(b\) and one black child scores \(c\). It is easy to verify that the PP curve is unchanged. In our example, one white child improved from \(a\) to \(b\) and one from \(c\) to \(d\). In contrast, two black children improved from \(a\) to \(b\) and one from \(b\) to \(c\). The test gap is unchanged \(only\ if\) the value of improvement from \(c\) to \(d\) for one child equals the value of improvement from \(a\) to \(b\) for one child \(plus\) the value of improvement from \(b\) to \(c\) for a second
child. This is neither obviously false nor obviously true and cannot be resolved without some reference to the “correct” underlying scale.

It is clear from this and the examples from the previous section that scaling issues can be of great importance in theory. We now proceed to explore to what extent they are in practice.

4 Data

We use two data sets: the Children of the National Longitudinal Survey of Youth (CNLSY) and the Early Childhood Longitudinal Study Kindergarten Class of 1998-1999 (ECLS-K). The principal advantage of the CNLSY is that it features two separate tests. The first, the Peabody Picture Vocabulary Test, was administered before school entry and is similar to those on which there are early test score gaps. The second, the Peabody Individual Achievement Test, served as part of the basis for the test administered in the ECLS-K, the test on which the early gap is much more modest. This helps us examine directly the importance of test differences for the conflicting findings in the literature. On the other hand, unlike the CNLSY, the ECLS-K sample is nationally representative, and all students take each of the tests administered and in the same grade. Moreover, it is the data set used by Fryer and Levitt.

4.1 Children of the National Longitudinal Survey of Youth

The CNLSY is a biennial survey of children of women in the National Longitudinal Survey of Youth 1979 cohort (NLSY79). The NLSY79 is a longitudinal survey that has followed
a sample of 12,686 youths who were between the ages of 14 and 21 as of December 1978. The survey includes a nationally representative sample, as well as an oversample of blacks, Hispanics, military personnel, and poor whites, the latter two being dropped from the later surveys.

Beginning in 1986, the children of women surveyed in the NLSY79 were surveyed and assessed biennially. The assessments included a battery of tests of psychological, socioemotional, and cognitive ability, in addition to questions on the environment in which the child was raised. Children exit the sample at age 15, and enter a separate sample of young adults. As of 2008, a total of 11,495 children born to 4,929 unique female respondents had been surveyed.

Due to the way the sample was created, it is not nationally representative. Children born before 1982, when mothers in the NLSY79 were seventeen to twenty-five years old, will only be partially included in the sample as they were over four years old in the first survey year. Children born before 1972 will not be included at all although there should be very few such children. Children who were adopted into and out of the families of the mothers are not sampled. Children born after 1994 will only be partially observed in the sample and will thus be underrepresented.

Our sample consists of children from age three or four through third grade or roughly age nine and so underrepresents children of older mothers since children born after 1998, when the mothers would have been thirty-four through forty-one, will not have reached third grade. It also underrepresents children born before 1982, when the mothers were seventeen to twenty-five, since such children would be older than four in 1986.

Our focus is on the Peabody Individual Achievement Test (PIAT) Reading: Recognition
and Comprehension subtests and on the Peabody Picture Vocabulary Test (PPVT). The Peabody Picture Vocabulary Test is a test of receptive vocabulary that is, according to the CNLSY User’s Guide, designed to provide a quick estimate of scholastic aptitude. The User’s Guide reports that the PPVT was administered when children were four or five and again when they were ten or eleven. It appears to us that, in fact, the earlier administration occurred between the ages of 36 and 60 months. In order to avoid measuring differences in human capital that could be caused by differences in kindergarten quality, when we examine young children we limit the analysis to children who took the exam at less than four years of age. Further limiting our sample to only black and white youths, we have a total of 1,655 scores (1,072 white and 583 black) for tests taken between the ages of 3 and 4.8 There are no repeat exam takers.

The data show a racial test gap within this sample. On average, black children perform .97 standard deviations worse on the PPVT than do white children, based on the official scale. The highest score is 77 and was attained by one child, while two children scored 0, the lower bound.

Although not tied to a particular curriculum, the PIAT is designed to measure the types of skills typically taught in school. It covers a sufficiently wide range of material that the scores are not subject to boundary effects at the top although this is somewhat of a concern at the bottom. The PIAT was administered at each survey to all children age 5-14. Because the survey is conducted in alternate years, we typically observe a child in kindergarten and second grade or in first and third grade but not both.

Table 1 shows descriptive statistics for our sample of PIAT test scores. Although children typically take the test in only two grades, sample size is fairly consistent across the grades
that we analyze, both in terms of total observations and the proportion of test-takers who are black. Since the testing material remains the same, scores rise steadily over time, from an average score of 17 in kindergarten to an average score of 39 by third grade. In each grade, the average score is higher among whites than among blacks, and this difference rises as children progress through school. The standard deviation of the test scores also rises. While there is at least one child who scores a 0 in each grade, in the later grades these children are severe outliers. In the third grade, for instance, the three lowest scores are 0, 2, and 3, while the fourth lowest score is 15. The highest score rises as children reach higher grades; the highest score in the sample is 81, achieved by a white child in third grade.

The gap between blacks’ and whites’ PIAT scores is quite modest in kindergarten, but expands over the first four years of school. Blacks initially perform .25 standard deviations worse than whites do on the PIAT but by third grade have fallen .61 standard deviations behind. These results are in line with those in Fryer and Levitt (2006) and our own from the ECLS-K which we describe in the next subsection. On the other hand, the pre-kindergarten gap on the PPVT is almost a full standard deviation, in line with the results in Jencks and Phillips (1998). These two findings are suggestive of the result in Murnane et al (2006) that the difference between the results in Fryer and Levitt and the prior literature reflects the differences in the tests.

4.2 Early Childhood Longitudinal Study

The ECLS-K is a nationally representative longitudinal survey that follows children who entered kindergarten in the 1998-1999 school year. Information was collected in the fall and
spring of kindergarten, and the springs of first, third, fifth, and eighth grades.9

The children were surveyed and assessed on a variety of different dimensions, such as school experience, motor skill development, height, weight, and direct cognitive assessments of reading and mathematical skill. In each survey year, the student’s parents and teacher were interviewed about the child’s background, home, and school environment. The tests were designed to measure the student’s ability in reading, mathematics and general knowledge or science.10 The material covered on the test remained the same through first grade, but was modified in later years to reflect the growing knowledge that should be gained in school. Children were first given a short “routing test” that directed them to a more comprehensive exam, the difficulty of which depended on their answers to the routing test. According to the User’s Guide, overall scores are calculated using IRT and represent the estimated number of questions the test taker would have answered correctly had she taken the entire test, rather than just the section to which she was routed. In principle, a 112 on the kindergarten entry test represents the same level of accomplishment as a 112 on the third grade test. For our analysis, we will focus only on the evolution of the test score gap through third grade but in some cases also draw on the fifth grade data to scale the earlier scores. Therefore, we use the scores that were released with the 5th grade data file.

We mimic Fryer and Levitt’s sample construction methods to make our results comparable to theirs. We focus on the reading scores because they show the most striking growth in the early years in the Fryer/Levitt study. We drop all students who are missing a valid reading score from kindergarten through third grade, and drop all students who do not have a valid entry for race. We also use the sampling weights associated with grades kindergarten through three for child assessment studies, and drop all children who do not have a valid set
of these weights. For much of the analysis we use only the test score and race data, but in one table we control for sociodemographic characteristics.

Table 2 shows descriptive statistics for our ECLS-K sample. We have 11,414 observations of whom 62 percent are white and 17 percent are black. The baseline scale shows a modest (0.4 standard deviations) test-score gap at the beginning of kindergarten, rising steadily to a gap of three-quarters of a standard deviation towards the end of third grade. The second column of Table 2 shows the corresponding figures from Fryer and Levitt. Although our sample is somewhat larger with a higher proportion of whites and blacks than theirs, the test-score gap evolves in very similar ways in the two samples.

It is important to recognize that there is only a modest amount of overlap in the entry and third grade scores of the ECLS-K. About 95 percent of students received scores on the entry test that were below the lowest score on the third grade test. Still the remaining 5 percent scored better than at least some third graders, and two students entering kindergarten scored above the third grade mean using the original test score scale.

5 Methods

We define the test score gap at a given grade or age as the difference between the mean test scores of whites and blacks divided by the standard deviation of test scores in that grade or at that age.

We begin by searching for the monotonic transformations of the original scale that max-
imize and minimize the growth of this gap. We impose the transformation

\[T(t+1) = T(t) + a_{t+1}^2 \]

(5)

where \(t \) is the original scale, \(T \) is the transformed scale and \(a_{t+1} \) is a real number. Since the gap is unchanged by a linear transformation, we must normalize two of the parameters. We set \(T(0) \) equal to 0 and \(T(t_{max}) \) equal to \(t_{max} \) where \(t_{max} \) is the highest score observed in that grade.\(^{11}\) Define \(G_g \) to be the test gap in grade \(g \).

\[G_g = \frac{N_w^{-1} \sum_{i \in \text{white}} T(t_{ig}) - N_b^{-1} \sum_{i \in \text{black}} T(t_{ig})}{\sqrt{N^{-1} \sum \left(T(t_{ig}) - N^{-1} \sum T(t_{ig}) \right)^2}} \]

(6)

where \(G_g \) is the gap in grade \(g \), \(N_w, N_b \) and \(N \) are the sizes of the white, black and total sample. We choose the remaining values of \(a \) using Newton-Raphson to minimize the objective function given by

\[D_{\text{min}} = \min_a (G_3 - G_e) \]

(7)

where \(D \) is the difference between the test gap in grade 3 and the test gap in kindergarten, and \(a \) refers to the vector of coefficients. We define \(D_{\text{max}} \) similarly for the maximum. In practice, not all of the possible scores are observed each year in the data. We normalize \(a_{t+1} \) to 0 if no member of the sample in that grade is observed to have an initial test score of \(t + 1 \).

This nonparametric approach is useful for finding the bounds on the gap, but it produces scales that are typically step functions with one or two steps and likely implausible.
Additionally it cannot be used when the test score is a continuous variable, as the ECLS-K assessment approximately is. Therefore, we focus on transformations that are both monotonic and smooth. We look at the path of the gap that can be formed by varying parameters in a sixth degree polynomial

$$T(t) = \beta_0 + \beta_1(t-c) + \beta_2(t-c)^2 + \beta_3(t-c)^3 + \beta_4(t-c)^4 + \beta_5(t-c)^5 + \beta_6(t-c)^6$$

where $\beta_0 - \beta_6$ and c are constants. This type of function is very flexible and can be used to approximate a wide array of continuous functions. This transformation, however, is not guaranteed to be monotonic. Our algorithm checks for monotonicity and rejects attempts to choose parameters that violate this condition.\(^\text{12}\) Needless to say, not all monotonic functions will be well approximated by even a monotonic six-degree polynomial. We therefore cannot rule out the possibility that some other transformation could generate results outside the range we present here.

Again, G is unchanged by linear transformations. When showing the density of the test scores, we normalize their standard deviation to equal 1 and choose β_0 so that their mean is 0. Note that the test score distribution is not required to be symmetric so that the median need not be 0. However, it is easiest to show the transformations on a scale similar to the one used for the original test scores. Therefore when showing the relation between the two scales, we fix the highest and lowest scores to be equal across scales.\(^\text{13}\)

If the test score distributions on entry and in third grade were disjoint, then (subject to a minor caveat about the ability of a six-degree polynomial to simultaneously approximate two different distributions), we would find D_{max} by minimizing the test-score gap at entry and
maximizing it in third grade. Conversely, to find D_{min} we would maximize G_e and minimize G_3.

In practice, because the two test score distributions overlap, we cannot do the maximizations and minimizations separately. Nevertheless, because there is not much overlap, the process of selecting the transformations comes close to mimicking this approach.

As we will see, in both data sets, the implications of D_{min} and D_{max} are very different. In the latter case, the black-white gap is trivial when children first enter school but grows to be substantial by the end of third grade. In contrast, in the former case, the black-white gap in the ECLS-K is modest but not trivial when children enter school and changes little over the next four years. In the CNLSY the gap under D_{min} actually shrinks.

These bounds are not very helpful. Therefore, to help us select among the possible transformations, including less extreme ones, we choose the transformations that have the most predictive power for future test scores. For the CNLSY, we maximize the correlation between the PPVT at age 3 and the PIAT reading test administered during kindergarten. For the ECLS-K, we maximize the correlation between the entry and third grade tests.

6 Results

6.1 Maximizing and Minimizing the Growth of the Gap

The first column of Table 3 shows the evolution of the black-white test gap in the PIAT, using the original scale provided with the exam. The gap shows a large increase over the first four years of education, beginning at a modest .25 standard deviations in kindergarten
and rising to .61 standard deviations by third grade.

We can find the boundaries of the evolution of this gap by assigning a new set of monotonically increasing test scores chosen to either maximize or minimize the difference between the third grade and kindergarten test gap. Under the growth-minimizing scale, the black-white test gap shrinks by .18 standard deviations during the first four years of education. Column (2) of Table 3 shows the evolution under this minimizing transformation. The test gap in kindergarten is similar to that of the baseline at .24 standard deviations. In contrast with the baseline, the gap immediately begins to decline to .18 standard deviations in first grade and .08 standard deviations in second grade. The gap remains roughly constant in third grade, ending at .06 standard deviations.

The evolution under the growth-maximizing scale is shown in the third column of Table 3. This transformation reduces the gap at kindergarten substantially to just .05 standard deviations. After kindergarten the evolution is similar to that in the baseline model, with blacks performing .63 standard deviations worse than whites in third grade, only slightly worse than they perform using the baseline scale. With this transformation, the gap grows by .58 standard deviations over the first four years of school.

The two extreme transformations produce test scales that differ noticeably from the baseline scale. The transformed scales are essentially step functions, with scores that are almost constant within tiers separated by large jumps. Though this may not be intuitively appealing, it is not unlike tests which have “proficiency” cutoffs. Suppose for instance that kindergartners only differed in their possession a few meaningful skills such as the ability to recognize letters, the ability to recognize words, and the ability to read for comprehension. Then this could be an appropriate scale to use at that grade. In fact, the PIAT reading
test is designed somewhat like this. Students must pass a reading recognition test in order to advance to questions on a reading comprehension test. The modal score in both our kindergarten and first grade sample is 18, which is the highest score a student could achieve without advancing to the reading comprehension section.

Turning our attention to the ECLS-K, because the IRT scoring method produces an essentially continuous variable, we use a sixth-degree monotonic polynomial transformation on the entire scale. This means that we apply the same transformation to each grade. Table 4 shows how the achievement gap on the ECLS-K reading assessment evolves from the beginning of kindergarten through the spring of third grade. The first column repeats the baseline pattern from Table 2. The second column shows the choice of transformation that minimizes the estimated growth in the gap. At kindergarten entry the gap is .46, only slightly higher than in the baseline. As discussed above, the scale that minimizes the growth in the test score gap should come close to maximizing the entry gap. Thus it appears that the scale used in the ECLS-K comes close to maximizing that gap. The minimum possible growth in the gap is quite small. Using this scale, in third grade the gap is only .51 and thus noticeably less than the gap in the baseline. And the growth between entry and third grade is only .05. Note that, in principle, minimizing growth between entry and third grade could still generate large swings in the first grade gap. However, this does not occur. There is no noticeable change in the gap between any pair of tests when this scale is applied.

Column (3) of Table 4 shows the results of choosing the transformation that maximizes the growth of the gap between kindergarten and third grade. The transformed gap at the beginning of kindergarten is now only .11 standard deviations, which is .29 less than in the baseline. The transformed gap increases by .10 standard deviations to .21 between the fall
and spring kindergarten tests and then rises a further .22 standard deviations by the spring of first grade so that the estimated gaps are similar to the baseline for the first and third grades. The end result is a growth of .64 standard deviations in the racial test gap in the first four years of education, almost twice that using the baseline scale. Note that the gap at the end of third grade is almost unchanged from the baseline, suggesting that the baseline scale comes close to maximizing the black-white gap at this stage.

Figure 1 shows the density function of test scores associated with each choice of scale for the ECLS-K at kindergarten entry. Note that in the baseline case, it is skewed with a long right tail. In contrast, visually, the resulting test score distribution from the minimizing transformation more closely approximates a normal distribution. The density associated with the maximizing transformation is somewhat aesthetically displeasing and possibly unattractive on other grounds. Most of the weight of this distribution is in a narrow band around its mode, and there are no scores substantially below this mode. Nevertheless, we do not find this representation of the scores altogether counterintuitive. It is plausible that most children do not have much in the way of reading, math and general knowledge skills and that the modest differences over much of the range are uninformative. On the other hand, there are a small number, best represented by the two who are already operating solidly at the third grade level, who are truly distinct from the rest of the pack. Moreover, in some respects the density of the growth-maximizing transformation is more aesthetically pleasing than the income or wealth distribution in the United States. It is less skewed than either. The 50-10 spread (measured in standard deviations) is plausibly larger than it is in the wealth distribution.¹⁵

How do these transformations affect the test score distributions in third grade? As
previously noted, the transformation that minimizes the growth in the gap will be close to the one that minimizes the third grade gap while the choice of \(T(t) \) that maximizes the growth of the gap produces a third-grade gap very close to the one in the baseline. Figure 2 shows the density of the test score distribution for the baseline scale and the two transformations. As in the case of the kindergarten scores, the key to minimizing the third grade gap, and thus growth, is compressing the middle of the distribution so that most students appear quite similar and spreading out the differences among very high and among very low scores. In contrast, the growth-maximizing transformation leaves the distribution of test scores looking similar to that associated with the baseline.

As already discussed, we should not necessarily dismiss distributions that primarily distinguish the very high and very low performers from everyone else. While the large spike at the mode when using the growth-minimizing transformation initially appears problematic, the implied distribution is not obviously more implausible than the U.S. earnings, income and wealth distributions. However, it is perhaps more problematic that the growth-minimizing transformation requires this large spike to appear between school entry and third grade.

The relation between the original and transformed scales is shown in figure 3. We can see that the growth in the test score gap is minimized if we believe that differences in very low scores (roughly 15 to 40) and very high scores (roughly those over 140) are very informative but those in between are relatively uninformative. The transformation that maximizes the growth of the test score gap does the opposite, at least at the bottom of the scale. It treats most differences among the very low scores as uninformative. This would be appropriate if we believed that most children arrive in kindergarten knowing very little of the material covered by the ECLS and that throughout most of the distribution, differences in performance should
be viewed as relatively unimportant and that only children with very high scores should be viewed as differing substantially from the mass of kindergarten entrants.

The results in this subsection bring out the fragility of any conclusion about the extent to which the test score gap increases between school entry and the end of third grade. The bounds permit conclusions ranging from “there is essentially no gap when students begin school and a very sizeable gap by the end of third grade” through “there are modest gaps at entry and at the end of the third grade and essentially no growth in the gap over this period.” There are even scales for the PIAT from which one could conclude “black children moderately lag behind white children in achievement when they enter school, but match the achievement of their white peers by third grade.” As is often the case with bounding exercises, the range of possible results is too large to be helpful.

It is thus evident that determining the right scale is important in determining how the gap between blacks and whites evolves. We could attempt to choose scales that produce “aesthetically appealing” distributions of test scores, but this is unsatisfactory. There is no consensus on what the distribution of childhood ability should look like. Well accepted childhood tests, including the PIAT and the ECLS-K assessments, produce widely varying distributions of achievement. And as discussed before, there are reasons to think that unintuitive distributions of ability could be plausible, both for young children and adults. In the next subsection we consider a more formal approach to choosing the appropriate transformation.
6.2 Selecting Transformations

We would not expect kindergarten or first grade performance to perfectly predict third grade performance. There is randomness in performance on each test. Moreover, students make varying academic progress. Indeed the point of the current exercise is to ask whether blacks and whites progress academically at different rates during the first four years of school.

Nevertheless, tests measure related skills. Students who perform well on one test would generally be expected to perform well on the other tests. A reasonable criterion for selecting a transformation is to ask which transformation allows us to best predict future performance using information from previous tests. We therefore choose transformations which maximize the correlation between test scores. If the tests measure a common underlying latent variable, this approach maximizes reliability. If not, it merely maximizes the ability of an earlier test to predict performance on a later test.

For the CNLSY we have access to scores on an early childhood cognitive achievement test, the PPVT. We construct a sample of children who took both the PPVT before age 4 and the PIAT while in kindergarten. This sample consists of 398 white and 253 black children. The racial test gaps in this subsample are very similar to those of the full sample. Blacks perform .97 standard deviations worse on average on the PPVT than whites, and .2 standard deviations worse than whites on the PIAT. The correlation between the untransformed test scores is .32.

We use monotonic sixth degree polynomial transformations to find the set of scales which maximizes the correlation between individuals’ PPVT and PIAT test scores. The resulting scales increase the correlation between these two tests only moderately, to .35 and do not
noticeably alter the racial test gaps. The test gap on the PIAT falls to .24 and that on the PPVT increases to .98.

In Figure 4, we plot the correlation-maximizing transformations over the range of our sample, normalizing each scale to have the same range as the baseline. The transformed PPVT is similar to the original except that it compresses the highest scores. Interestingly, the PIAT transformation magnifies differences among the highest test scores, while compressing the scores somewhat below the highest. While this suggests that a high PIAT test score may be a more important predictor of performance than a high PPVT test score, it is important to remember that inferences on the highest range are based on only a few observations.

Column (4) of Table 3 shows the evolution of the PIAT test gap under this scale. Surprisingly given the modest transformation, the pattern differs substantially from the baseline. The kindergarten gaps are similar, but the gap drops to .19 in third grade for a decrease from kindergarten through third grade of approximately .05 standard deviations. One caveat for this result is that roughly 18 percent of the third grade sample scored above the highest kindergarten score. This is much less of a problem for the first and second grade tests. Yet, the gap using the transformed scale is essentially constant from kindergarten through second grade while it grows substantially from year to year using the original scale.

In the ECLS-K we do not have data on test scores outside of the cognitive assessments. We therefore maximize the correlation across the reading assessments. First we examine the transformation that maximizes the correlation between the tests taken at the beginning of kindergarten and the spring of third grade. This new scale substantially increases the correlation between the two scores. The correlation when using the transformation is .62 \((R^2 = .39)\) compared with only .54 \((R^2 = .29)\) using the baseline scores. This approach
produces a kindergarten gap that is very close to the potential maximum gap at kindergarten entry and a third grade gap that is very close to the maximum gap at this point.

As noted earlier, the scale that maximizes the third grade gap is similar to the baseline scale and the one that maximizes the entry gap is only moderately different from the baseline. Therefore, the overall pattern of the racial test gap using the correlation-maximizing transformation does not differ dramatically from the baseline. As shown in column (4) of Table 4, the total growth in the gap from the beginning of kindergarten through the end of third grade is .26 standard deviations, .09 smaller than the growth seen in the baseline. All of the growth of the gap occurs between the end of first and the end of third grade. This differs from the story told by the baseline ECLS-K of a steady increase in the gap throughout the first four years of schooling.

We additionally choose the scale that maximizes the R^2 from a regression of the third grade score on the scores the student received on the first grade and two kindergarten tests, as well as from a regression of the fifth grade score on the third, first, and kindergarten tests. Both these approaches yield similar results to those of column 4.

6.3 Controlling for Socioeconomic Factors

One of the surprising results in Fryer and Levitt is that when students first enter kindergarten, the modest black-white test score gap can be accounted for fully by a small number of socioeconomic characteristics (child’s age, child’s birth weight, a socioeconomic status measure, WIC participation, mother’s age at first birth, and number of children’s books in the home). In this subsection we ask whether the same is true for the scales developed in the
previous subsections. Of course, when there is no gap at entry, these characteristics cannot account for the gap, but it is possible that they could reverse it.

Table 5 shows the results of this exercise. Strikingly the kindergarten entry results are robust to the choice of scale. Regardless of whether the scale shows an unadjusted gap of .11 or .47, after controlling for this small number of factors, the remaining gap is actually reversed and favors blacks by between .03 and .05 standard deviations. In contrast, the importance of the controls in third grade depends on the choice of scale. Three of the four scales generate unadjusted test score gaps of approximately .75 standard deviations. After controlling for the socioeconomic factors, the gap falls to about .3 standard deviations but still indicates a very substantial deterioration in the relative performance of black children over the first three years of school. In contrast, the transformation that minimizes the growth of the unadjusted gap shows a noticeably more modest adjusted gap of .17. In this case two-thirds of the unadjusted gap is accounted for by the measured characteristics, a somewhat larger proportion than the little over half accounted for when the other scales are used.

Thus the choice of scale has a significant impact on the magnitude of the increase of the adjusted gap as well as of the unadjusted gap.17 We note that we have not chosen the scales on the basis of the adjusted gaps. We have, however, done some experimentation that suggests that maximizing and minimizing the adjusted gaps would not significantly alter the results.

Another surprising result in Fryer and Levitt is that the growth of the black-white test gap is virtually unaffected by whether or not socioeconomic controls are used. Both the controlled and uncontrolled test gaps grow by a similar magnitude between entry and the end of the third grade. We have already shown that this appears to be an artifact of the
scale. Much of the growth in the gap under the maximizing transformation can be explained by socioeconomic controls. While the raw gap increases by .64 standard deviations over the first four years of education under this transformation, the controlled gap increases by only .35 standard deviations. Under the minimizing transformation, the socioeconomic controls actually have negative explanatory power. While the raw gap under this transformation grows by only .05 standard deviations, the adjusted gap increases by .2 standard deviations.

We further analyze the robustness of this result in Table 6. In the first two columns, we find the transformation that maximizes the percentage of the growth in the raw test gap that can be explained by the socioeconomic controls. That is, we minimize the ratio of the magnitude of the growth in the controlled gap over the magnitude of the growth in the uncontrolled gap. In this transformation, the controls explain only slightly more than in the growth-maximizing transformation. The raw test gap grows by .59 standard deviations from kindergarten through third grade, while the controlled gap grows by only .28. In columns 3 and 4, we instead maximize the difference between the growth of the raw test gap and the growth of the controlled gap. The pattern under this transformation looks similar to that of the maximizing transformation as well.

6.4 Scale Sensitivity

To some extent, the choice of scale limits the potential magnitude of between-group differences. An example may clarify this point. Suppose a group of researchers is interested in understanding early racial differences in reading. They administer a test to a group of 50 black and 50 white children. The performance of the children can be strictly ranked. They
then give the results to two psychometricians with instructions to scale the results. The first reports that in this group the black-white test score gap is almost exactly two standard deviations. The second reports that it is about 1.1 standard deviations.

Further investigation reveals that both psychometricians believe that scales should reflect developmental milestones and that differences in performance on a given side of the milestone are insignificant. They also agree that the milestone is passed when children shift from “learning to read” to “reading to learn,” but they differ about what test performance corresponds to this shift.

The first psychometrician set the milestone at a point for which half of the original sample was judged to be reading to learn. In contrast, the second psychometrician believes that only the 25 children with the highest scores merit this designation. Note that because each psychometrician uses a scale with only two points, their calculations are invariant to the issues we have addressed heretofore.

In our fictional example, we have allocated the fifty lowest scores to the “blacks” and the highest fifty scores to the “whites.” In both cases, the reported test gaps are the largest consistent with the scales and distributions “chosen” by the psychometricians. Thus both gaps are at their maxima, but when the scale sets equal numbers of 0s and 1s, the gap can be bigger than it can be when one one-fourth of the students receive 1s.

The lower half of the scores in the ECLS-K kindergarten test are all clustered within one standard deviation of the median. It is possible that this characteristic of the test and its scaling affects the potential for a large test score gap in kindergarten.

To analyze the effect that such clumping may have on the evolution of the racial test gap in the ECLS-K, we calculate what the test gap would be in each grade if blacks had all the
lowest scores and whites all the highest. Denoting w_j as the weighted number of children with score t_j, where j is the rank (from low to high) of the score, and W_B is the weighted number of blacks in the sample, we create a set of weighted test scores $B = \{t_j | j \in [1, m]\}$ where m solves the problem $\sum_{i=1}^{m} w_i = W_B$. We, likewise, assign all the highest scores to whites, based on their weighted proportion of the sample.\(^{18}\)

The first column of Table 7 shows the weighted test gaps along with the hypothetical upper boundary for the gap on the ECLS-K assessments. While the observed black-white test gap increases over time, so does the boundary for that gap. The theoretical maximum gap based on the distribution at the beginning of kindergarten is 1.5 standard deviations. This rises to 2.2 standard deviations by the end of third grade. The result is that the observed racial test gap, as measured as a percentage of the possible test gap, hardly changes over time. At the beginning of kindergarten, the achievement gap is 27 percent of the maximum possible achievement gap, given the scale, while the gap is 33 percent of the maximum gap at the end of third grade. This raises the concern that part of the large observed increase in the racial achievement gap in the ECLS-K may be attributable to changes in scale and test sensitivity, as opposed to changes in the real achievement gap.

The remaining columns of Table 7 look at the boundary of the test gap for our previously discussed transformations. Columns (2) and (3) show the maximum test gap for the transformations that simply try to minimize or maximize the growth of the gap in the first four years of education. Interestingly, these transformations have the opposite effect on the growth of the gap relative to the maximum test gap. The minimizing transformation yields a test gap 24 percent the size of the maximum gap at kindergarten entry, but one that is 53 percent at the end of third grade despite virtually no growth in the size of the test gap
in terms of standard deviations over this period. Likewise, in the maximizing transformation the gap as a percentage of the maximum gap shrinks from 46 percent at the start of kindergarten to 35 percent at the end of third grade despite a nearly 700 percent increase in the size of the gap in terms of standard deviations over that same period. Our transformations appear to act mainly by changing the potential sensitivity of the scale to the racial test gap. The test gap at third grade can be no larger than .95 standard deviations under the minimizing transformation, compared to 2.23 standard deviations in the baseline. The maximizing transformations can have a gap no larger than .24 at kindergarten, which is not only lower than the maximum in the baseline of 1.5, but lower also than the actual observed test gap in the baseline of .4 standard deviations. Column (4) looks at the boundaries for the test gap under the transformation that maximizes the correlation across tests. Strikingly, the maximum gap is almost identical at kindergarten entry and third grade. The increase in the estimated gap as a proportion of the maximum gap therefore reflects changes in the former rather than the latter. Recall, however, that the increase in the estimated gap with this scale is smaller than with the base scale.

Rather than look at the boundaries of the test score gap, an alternative approach is to look at what the gap would look like if the test scale remained constant. Denote $F_g(r)$ as the function that maps a child’s performance rank to a test score. Panel A of Table 8 shows the evolution of the test gap if $F_g(r)$ did not vary with g. That is, we choose an initial grade and then take a child’s rank on each grade’s exam and reassign to him or her the score given to the child who was at that rank on the initially chosen exam. When we impose either the fall kindergarten or the spring third grade mapping, we see virtually no growth in the test score gap until the third grade test, but substantial growth in the test gap at third grade.
Panel B instead supposes that we fix r while varying F_g (i.e. changing the scales across grades as they do de facto in the ECLS-K.) Even if the rank ordering of students did not change, we would still see growth in the test gap using the baseline scales in the ECLS-K. If the rank order of children remained what it was in kindergarten throughout the first four years, we would observe a .09 standard deviation increase in the test gap from entry to third grade due simply to changes in the spacing between ranks over time. Likewise, using the third grade rank order we would observe a .13 standard deviation increase in the test gap. Most of the increase in this gap occurs between the spring first grade and spring third grade tests. Using the entry rankings, the increase during this time span is .05 standard deviations, and using the third grade rankings it is .07.

Table 8 strongly suggests that the growth in the test gap from kindergarten through first grade reflects scales and not achievement. Moreover, a significant portion of the growth from first to third grade also reflects scaling decisions. Taken together, tables 7 and 8 suggest that when we use the base scale, something on the order of 8 to 13 percentage points of the growth in the gap between entry and third grade reflects scale sensitivity.

7 Summary and Conclusion

Our findings suggest that we should exercise great caution when using test scores to determine when a black-white test score gap first emerges and whether it widens in the early school years. By choosing the scale appropriately, we can make the initial gap in the ECLS-K, at kindergarten entry, in reading anywhere from a trivial one-ninth of a standard deviation to almost half a standard deviation. Similarly, the third grade gap varies between half and
three-quarters of a standard deviation. Equally significantly, whether the gap widens after school entry depends on our choice of scale. Some scales show a decrease in the test gap in the CNLSY.

Our message is by no means limited to the analysis of the black-white test score gap. It must be considered whenever test scores or any ordinal measures are used as dependent variables. There is increasing pressure in the United States and elsewhere to use “value-added measures” to determine teacher compensation and retention. Value-added is typically measured by regressing student scores on their past scores and other characteristics. Teacher value-added is calculated either by including a teacher fixed-effect in the regression or as the mean residual for that teacher. Lang (2010) presents a simple example in which the ranking of teachers is highly sensitive to the choice of scale. At the very least, before linking important decisions mechanically to value-added measures, we should be sure that the measures are robust to arbitrary scaling decisions.

Cascio and Staiger (2012) partially address this issue in the context of the common finding that interventions fade-out relatively quickly. Their point can be summarized as follows. Suppose that we had the good fortune of having the “true” interval scale of achievement (defined up to a linear transformation). It is common practice among economists to renorm scales each year to have mean zero and variance 1. For any given year, this is unproblematic; it is simply a linear transformation. However, if the variance of the true scale grows as students progress through school, then we are using different linear transformations each year, and the scales are no longer strictly comparable. If variance grows quickly as students progress through school, whatever students learned earlier will seemingly become less important because the true scale is divided by a higher number later in school. Therefore,
fade-out can be a mechanical result of the convention of normalizing test scores. They find evidence of such an effect but conclude that it is only of modest importance.

However, Cascio and Staiger do not address the ordinality issue that is the focus of this paper. Their approach depends on the ability to calculate correlations among test scores, which is possible only if they are measured on an interval scale. We interpret their result as saying that there is a monotonic transformation of the latent achievement scale such that renormalizing the transformed scale in each grade does not mechanically create much fade-out. It is by no means clear to us that their result would hold for arbitrary monotonic transformations. Indeed, we believe the opposite to be likely.

As discussed above, we are by no means the first to recognize the difficulties of working with ordinal test score scales. Cunha and Heckman (2008) and Cunha, Heckman and Schennach (2010) tie test scores to adult outcomes in order to create interval scales. This has the enormous advantage of giving test scores a valid external reference. However, it is not a panacea. The test score scale will differ if it is tied to wages or to log wages, and the choice between the two is essentially a welfare judgment. We have no idea whether plausible variation in the choice of anchor would affect the outcome of their research. We expect that scales that put much more weight on only differences among very low wages or only differences among very high wages would produce different results but do not find such scales particularly plausible.

Nor is our message limited to the education and child development literature. Similar problems arise in the happiness literature. A common, perhaps the central, finding in this literature is that the relation between happiness and income is clearly positive within countries but, at best, weak across countries. It is way beyond the scope of this paper to provide
a critique of this literature. We note only that happiness is typically measured on an ordinal scale of three to five points. There are rarely more points than in the Cantril self-anchoring scale (Cantril, 1965) which asks, “Please imagine a ladder with steps numbered from zero at the bottom to 10 at the top. The top of the ladder represents the best possible life for you and the bottom of the ladder represents the worst possible life for you. On which step of the ladder would you say you personally feel you stand at this time?” Researchers in this field routinely average the answers within a group to find the mean level of happiness or life satisfaction. Without analyzing the underlying data, it is difficult to know how problematic this is.

In this paper, we have shown that scaling matters but differently for different tests. In the ECLS-K, the gap at kindergarten entry is somewhat but not dramatically larger than suggested by the untransformed scale and the growth in the gap through third grade is correspondingly smaller. Almost all of this growth occurs between spring of the first and third grades. But even this result is suspect because the third grade test is capable of generating a larger gap than are the earlier tests. Given this concern, we do not wish to place excessive emphasis on the finding that the gap widens between first and third grades. In the CNLSY, the gap in kindergarten is virtually identical in the untransformed and our preferred transformed scales. However while the untransformed scale shows a dramatic increase in the test gap over the first four years, our preferred scale actually implies a decline in magnitude by third grade.

We note that it has become something of a mantra in education circles that third grade is when students begin the transition from “learning to read” to “reading to learn.” If the timing implied by our ECLS-K rescaling is correct, this suggests one avenue to pursue in
furthering our understanding of the gap. If the pattern in our CNLSY rescaling is correct, pre-enrollment interventions may be more important in reducing the test gap than those that are post-enrollment.

More broadly, our findings suggest that economists and other researchers should be much more circumspect in their use of test scores and other ordinal scales as dependent variables, particularly when comparing changes across groups. While many findings will be robust to scale changes, many will not be.
References

Lang, Kevin, “Measurement Matters: Perspectives on Education Policy from an Econo-

Notes

1Fryer (2010) finds that, depending on the measure used, the racial test gap in the ECLS-K either continues to expand through eighth grade or remains fairly constant from third through eighth grade. Hanushek and Rivkin (2006) find a widening gap in Texas while Clotfelter, Ladd and Vigdor (2009) find in North Carolina that gaps widen among high-performing and narrow among low-performing students. Both studies, however, look at somewhat later grades than those used here and in Fryer/Levitt.

2See the summary in Rouse, Brooks-Gunn and McLanahan (2005) and the analysis in Duncan and Magnuson (2005).

3See the discussion of the two views in Reise and Waller (2009).

4There is a similar model based on the normal distribution which, to conserve space, we will not discuss.

5See, for example, Reardon (2008) who concludes that the test he uses does not satisfy this condition.

6The earliest reference appears to be Wilk and Gnanadesikan (1968). For examples of test gap measures based on the PP curve and extensions, see Braun (1988), Holland (2002), Ho and Haertel (2006) and Reardon (2008).

7See, for example, Ho (2009).

8We dropped one observation that reported being in the third grade at age 3, who had a PPVT score well above all of the other 3-year-old scores.

9An additional subsample includes a set of children who were initially interviewed in the fall of their first grade. These children are excluded from both our and Fryer and Levitt’s
analysis, since they do not have kindergarten test scores.

Beginning in the third grade, the general knowledge test was replaced by a science test.

In practice, our program sometimes converged faster (or only) when we normalized the two lowest scores, and then transformed the data afterwards to range from 0 to t_{max}.

This introduces a discontinuity into our objective function which creates many local minima (maxima). We therefore searched from several different starting locations for each transformation and report that which produced the smallest (largest) gap.

In practice, it was easier to do the estimation by setting the constant term to 0 and constraining the linear term and only subsequently transforming the estimated coefficients.

It is not entirely obvious that we should treat the difference between getting exactly the first six and the first five questions right as identical regardless of when the student took the test, but we impose this assumption.

This is based on our imputation from Kennickell’s (2009) calculations based on the 1989-2007 Survey of Consumer Finances.

Kimeldorf and Sampson (1978) refer to this as the monotone correlation.

Given the arbitrariness of scale, there is no reason to believe that the socioeconomic factors should enter the equation linearly. We choose this specification following that of Fryer and Levitt (2004,2006). The conclusions are robust to using a full set of interacted controls entering as a cubic polynomial.

The remaining middle scores are implicitly assigned to Hispanics, Asians, and others, though we do not look at their hypothetical test gaps in this situation.

Since we are using weights, we cannot map rank in one grade directly to rank in the other grade. Instead we view rank as a continuum and look at masses at each score. This
results in some children receiving a weighted average of two consecutive scores. The results are sensitive to the way in which ties at scores are broken, but since there are very few ties given the quasi-continuous nature of the scoring system, this sensitivity is only beyond the fourth decimal point.

Two noted happiness researchers went further and treated the scale as a ratio scale: “.. our data showed that people who earned $55,000 were just 9 percent more satisfied than those making $25,000.” (Dunn and Norton, 2012)
Figure 1: ECLS-K Kindergarten Densities

Outlying values beyond seven standard deviations above the mean are not displayed.
Figure 2: ECLS-K Third Grade Densities

Outlying values beyond seven standard deviations above the mean are not displayed.
Figure 3: ECLS-K Transformation Functions
<table>
<thead>
<tr>
<th>Grade</th>
<th>Total Mean (SD)</th>
<th>Black Mean (SD)</th>
<th>White Mean (SD)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Kindergarten</td>
<td>17.33 (5.18)</td>
<td>16.50 (4.79)</td>
<td>17.81 (5.34)</td>
</tr>
<tr>
<td></td>
<td>24.96 (7.94)</td>
<td>22.89 (6.41)</td>
<td>26.23 (8.51)</td>
</tr>
<tr>
<td></td>
<td>32.89 (9.72)</td>
<td>29.48 (8.57)</td>
<td>35.15 (9.79)</td>
</tr>
<tr>
<td></td>
<td>38.63 (9.71)</td>
<td>35.04 (9.33)</td>
<td>40.98 (9.23)</td>
</tr>
<tr>
<td>First Grade</td>
<td>2771</td>
<td>1015</td>
<td>1756</td>
</tr>
<tr>
<td></td>
<td>2765</td>
<td>1055</td>
<td>1710</td>
</tr>
<tr>
<td>Second Grade</td>
<td>2825</td>
<td>1127</td>
<td>1698</td>
</tr>
<tr>
<td>Third Grade</td>
<td>2832</td>
<td>1117</td>
<td>1715</td>
</tr>
</tbody>
</table>

Source: Children of the National Longitudinal Survey of Youth. Standard deviations in parenthesis.
Table 2: ECLS-K Descriptive Statistics

<table>
<thead>
<tr>
<th></th>
<th>Bond and Lang</th>
<th>Fryer and Levitt</th>
</tr>
</thead>
<tbody>
<tr>
<td>Race</td>
<td></td>
<td></td>
</tr>
<tr>
<td>White</td>
<td>0.62</td>
<td>0.55</td>
</tr>
<tr>
<td></td>
<td>(0.49)</td>
<td>(0.50)</td>
</tr>
<tr>
<td>Black</td>
<td>0.17</td>
<td>0.15</td>
</tr>
<tr>
<td></td>
<td>(0.37)</td>
<td>(0.36)</td>
</tr>
<tr>
<td>Hispanic</td>
<td>0.14</td>
<td>0.18</td>
</tr>
<tr>
<td></td>
<td>(0.35)</td>
<td>(0.38)</td>
</tr>
<tr>
<td>Asian</td>
<td>0.02</td>
<td>0.07</td>
</tr>
<tr>
<td></td>
<td>(0.15)</td>
<td>(0.25)</td>
</tr>
<tr>
<td>Female</td>
<td>0.49</td>
<td>0.49</td>
</tr>
<tr>
<td></td>
<td>(0.50)</td>
<td>(0.50)</td>
</tr>
<tr>
<td>Black-White Test Gap</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Kindergarten Fall</td>
<td>0.40</td>
<td>0.40</td>
</tr>
<tr>
<td></td>
<td>(0.03)</td>
<td>(0.03)</td>
</tr>
<tr>
<td>Kindergarten Spring</td>
<td>0.44</td>
<td>0.45</td>
</tr>
<tr>
<td></td>
<td>(0.03)</td>
<td>(0.03)</td>
</tr>
<tr>
<td>First Grade Spring</td>
<td>0.49</td>
<td>0.52</td>
</tr>
<tr>
<td></td>
<td>(0.03)</td>
<td>(0.03)</td>
</tr>
<tr>
<td>Third Grade Spring</td>
<td>0.75</td>
<td>0.77</td>
</tr>
<tr>
<td></td>
<td>(0.04)</td>
<td>(0.03)</td>
</tr>
<tr>
<td>Sociodemographic Controls</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Age (in months) fall</td>
<td>68.5</td>
<td>67.0</td>
</tr>
<tr>
<td>Kindergarten</td>
<td></td>
<td></td>
</tr>
<tr>
<td>SES composite measure</td>
<td>0.022</td>
<td>0.005</td>
</tr>
<tr>
<td>Number of children’s books in home</td>
<td>76.8</td>
<td>61.4</td>
</tr>
<tr>
<td>Mother’s age at first birth</td>
<td>23.6</td>
<td>23.6</td>
</tr>
<tr>
<td>Child’s birth weight (in ounces)</td>
<td>118.1</td>
<td>87.5</td>
</tr>
<tr>
<td>WIC participant</td>
<td>0.42</td>
<td>0.38</td>
</tr>
<tr>
<td>Observations</td>
<td>11414</td>
<td>10540</td>
</tr>
</tbody>
</table>

Source: Early Childhood Longitudinal Study Kindergarten Class of 1998-1999. Standard deviations are in paranthesis for variables. Test gaps measured in standard deviations and standard errors are in parenthesis.
Table 3: Evolution of the black-white test gap under various transformations of the PIAT

<table>
<thead>
<tr>
<th></th>
<th>Baseline</th>
<th>Minimum</th>
<th>Maximum</th>
<th>Corr Max</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>(1)</td>
<td>(2)</td>
<td>(3)</td>
<td>(4)</td>
</tr>
<tr>
<td>Kindergarten</td>
<td>0.25***</td>
<td>0.24***</td>
<td>0.05</td>
<td>0.24***</td>
</tr>
<tr>
<td></td>
<td>(0.04)</td>
<td>(0.04)</td>
<td>(0.04)</td>
<td>(0.04)</td>
</tr>
<tr>
<td>First Grade</td>
<td>0.42***</td>
<td>0.18***</td>
<td>0.29***</td>
<td>0.29***</td>
</tr>
<tr>
<td></td>
<td>(0.04)</td>
<td>(0.04)</td>
<td>(0.04)</td>
<td>(0.03)</td>
</tr>
<tr>
<td>Second Grade</td>
<td>0.58***</td>
<td>0.08***</td>
<td>0.52***</td>
<td>0.26***</td>
</tr>
<tr>
<td></td>
<td>(0.04)</td>
<td>(0.04)</td>
<td>(0.04)</td>
<td>(0.03)</td>
</tr>
<tr>
<td>Third Grade</td>
<td>0.61***</td>
<td>0.06</td>
<td>0.63***</td>
<td>0.19***</td>
</tr>
<tr>
<td></td>
<td>(0.04)</td>
<td>(0.04)</td>
<td>(0.04)</td>
<td>(0.03)</td>
</tr>
</tbody>
</table>

Gaps are average white score minus average black score on the PIAT-RC. Column 4 represents the transformation that maximizes the correlation between the PIAT-RC at kindergarten and the PPVT at age 3. Standard errors are in parenthesis. *p<.1 **p<.05 ***p<.01
<table>
<thead>
<tr>
<th></th>
<th>Baseline (1)</th>
<th>Minimum (2)</th>
<th>Maximum (3)</th>
<th>Corr Max (4)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Kindergarten - Fall</td>
<td>0.40***</td>
<td>0.46***</td>
<td>0.11***</td>
<td>0.47***</td>
</tr>
<tr>
<td></td>
<td>(0.03)</td>
<td>(0.03)</td>
<td>(0.02)</td>
<td>(0.04)</td>
</tr>
<tr>
<td>Kindergarten - Spring</td>
<td>0.44***</td>
<td>0.50***</td>
<td>0.21***</td>
<td>0.52***</td>
</tr>
<tr>
<td></td>
<td>(0.03)</td>
<td>(0.04)</td>
<td>(0.02)</td>
<td>(0.04)</td>
</tr>
<tr>
<td>First Grade - Spring</td>
<td>0.49***</td>
<td>0.49***</td>
<td>0.43***</td>
<td>0.49***</td>
</tr>
<tr>
<td></td>
<td>(0.03)</td>
<td>(0.04)</td>
<td>(0.03)</td>
<td>(0.04)</td>
</tr>
<tr>
<td>Third Grade - Spring</td>
<td>0.75***</td>
<td>0.51***</td>
<td>0.75***</td>
<td>0.73***</td>
</tr>
<tr>
<td></td>
<td>(0.04)</td>
<td>(0.02)</td>
<td>(0.03)</td>
<td>(0.03)</td>
</tr>
</tbody>
</table>

Gaps are average white score minus average black score on the ECLS-K reading assessment. Standard errors are in parenthesis. *p<.1 **p<.05 ***p<.01
Table 5: Evolution of the unexplained black-white test gap under various transformations

<table>
<thead>
<tr>
<th>Transformation</th>
<th>Baseline (1)</th>
<th>Minimum (2)</th>
<th>Maximum (3)</th>
<th>Corr Max (4)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Kindergarten - Fall</td>
<td>-0.05 (0.03)</td>
<td>-0.03 (0.04)</td>
<td>-0.04* (0.02)</td>
<td>-0.03 (0.04)</td>
</tr>
<tr>
<td>Kindergarten - Spring</td>
<td>0.04 (0.03)</td>
<td>0.08** (0.04)</td>
<td>-0.01 (0.02)</td>
<td>0.10** (0.04)</td>
</tr>
<tr>
<td>First Grade - Spring</td>
<td>0.10*** (0.04)</td>
<td>0.10** (0.04)</td>
<td>0.08** (0.03)</td>
<td>0.10** (0.04)</td>
</tr>
<tr>
<td>Third Grade - Spring</td>
<td>0.31*** (0.04)</td>
<td>0.17*** (0.03)</td>
<td>0.31*** (0.04)</td>
<td>0.30*** (0.04)</td>
</tr>
</tbody>
</table>

Gaps are the coefficient on a white indicator variable with black as the excluded variable. Each regression controls for SES, number of books in the home, gender, birth weight, indicators for whether the mother was a teenager or over 30 at birth, and WIC recipiency. Standard errors in parenthesis. *p<.1 **p<.05 ***p<.01
Table 6: Scales which maximize the explanatory power of controls

<table>
<thead>
<tr>
<th></th>
<th>Percent Difference</th>
<th>Raw Difference</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>No Controls (1)</td>
<td>Controls (2)</td>
</tr>
<tr>
<td>Kindergarten-Fall</td>
<td>0.07***</td>
<td>-0.03</td>
</tr>
<tr>
<td></td>
<td>(0.02)</td>
<td>(0.02)</td>
</tr>
<tr>
<td>Kindergarten-Spring</td>
<td>0.14***</td>
<td>-0.00</td>
</tr>
<tr>
<td></td>
<td>(0.02)</td>
<td>(0.01)</td>
</tr>
<tr>
<td>First Grade - Spring</td>
<td>0.32***</td>
<td>0.05**</td>
</tr>
<tr>
<td></td>
<td>(0.02)</td>
<td>(0.03)</td>
</tr>
<tr>
<td>Third Grade - Spring</td>
<td>0.66***</td>
<td>0.25***</td>
</tr>
<tr>
<td></td>
<td>(0.03)</td>
<td>(0.03)</td>
</tr>
</tbody>
</table>

Gaps are the coefficient on a white indicator variable with black as the excluded variable. Standard errors are in parenthesis. *p<.1 **p<.05 ***p<.01
Table 7: Black-White Test Gap as a Percentage of Boundary Under Various Transformations

<table>
<thead>
<tr>
<th></th>
<th>Baseline</th>
<th>Minimizing</th>
<th>Maximizing</th>
<th>Corr Max</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fall-K Black-White Test Gap</td>
<td>0.40</td>
<td>0.46</td>
<td>0.11</td>
<td>0.47</td>
</tr>
<tr>
<td>Fall-K Maximum Test Gap</td>
<td>1.49</td>
<td>1.92</td>
<td>0.24</td>
<td>1.97</td>
</tr>
<tr>
<td>Fall-K % of Maximum Gap</td>
<td>27.0%</td>
<td>24.1%</td>
<td>46.3%</td>
<td>23.9%</td>
</tr>
<tr>
<td>Spring-3 Black-White Test Gap</td>
<td>0.75</td>
<td>0.51</td>
<td>0.75</td>
<td>0.73</td>
</tr>
<tr>
<td>Spring-3 Maximum Gap</td>
<td>2.23</td>
<td>0.95</td>
<td>2.16</td>
<td>1.96</td>
</tr>
<tr>
<td>Spring-3 % of Maximum Gap</td>
<td>33.4%</td>
<td>53.5%</td>
<td>34.7%</td>
<td>37.4%</td>
</tr>
</tbody>
</table>

Gaps are average white score minus average black score on the ECLS-K reading assessment.
Table 8: Evolution of Black-White Test Gap Under Fixed Distribution

<table>
<thead>
<tr>
<th></th>
<th>Fall-K</th>
<th>Spring-K</th>
<th>Spring-1</th>
<th>Spring-3</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>(1)</td>
<td>(2)</td>
<td>(3)</td>
<td>(4)</td>
</tr>
<tr>
<td>Panel A: Fixed Scale, Varied Rank</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fall-K Distribution</td>
<td>0.40</td>
<td>0.42</td>
<td>0.44</td>
<td>0.62</td>
</tr>
<tr>
<td>Spring-3 Distribution</td>
<td>0.49</td>
<td>0.53</td>
<td>0.51</td>
<td>0.75</td>
</tr>
<tr>
<td>Panel B: Varied Scale, Fixed Rank</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fall-K Rank</td>
<td>0.40</td>
<td>0.42</td>
<td>0.47</td>
<td>0.49</td>
</tr>
<tr>
<td>Spring-3 Rank</td>
<td>0.62</td>
<td>0.65</td>
<td>0.72</td>
<td>0.75</td>
</tr>
</tbody>
</table>

Gaps are average white score minus average black score on the ECLS-K reading assessment.