NONPARAMETRIC ANALYSIS OF RANDOM UTILITY MODELS: TESTING

YUICHI KITAMURA* AND JÖRG STOYE**

Abstract. This paper aims at formulating econometric tools for investigating stochastic rationality, using the Random Utility Models (RUM) to deal with unobserved heterogeneity nonparametrically. Theoretical implications of the RUM have been studied in the literature, and in particular this paper utilizes the axiomatic treatment by McFadden and Richter (McFadden and Richter, 1991, McFadden, 2005). A set of econometric methods to test stochastic rationality given a cross-sectional data is developed. This also provides means to conduct policy analysis with minimal assumptions. In terms of econometric methodology, it offers a procedure to deal with nonstandard features implied by inequality restrictions. This might be of interest on its own right, both theoretically and practically.

1. Introduction

This paper develops new tools for the analysis of Random Utility Models (RUM). The leading application is stochastic revealed preference theory, that is, the modeling of aggregate choice behavior in a population characterized by individual rationality and unobserved heterogeneity. We test the null hypothesis that a repeated cross-section of demand data was generated by such a population, without restricting unobserved heterogeneity in any form whatsoever. Equivalently, we empirically test McFadden and Richter’s (1991) Axiom of Revealed Stochastic Preference (ARSP, to be defined later), using only nonsatiation and the Strong Axiom of Revealed Preference (SARP) as restrictions on individual level behavior. Doing this is computationally challenging. We provide various algorithms that can be implemented with reasonable computational resources. Also, new tools for statistical inference for inequality restrictions are introduced in order to deal with the high-dimensionality and non-regularity of the problem at hand.

* ** Kitamura acknowledges financial support from the National Science Foundation via grant SES-0851759. The authors thank Donald Andrews, Richard Blundell, Phil Haile, Chuck Manski, Daniel Martin, Rosa Matzkin, Francesca Molinari, and participants at various seminars for helpful comments. Ben Friedrich provided excellent research assistance.
Let
\[u : \mathbb{R}^K_+ \rightarrow \mathbb{R} \]
denote a random utility function. Again, randomness of \(u \) represents unobserved heterogeneity across individuals due to cross-sectional variation.\(^1\) Each consumer faces an income level and a price vector in \(\mathbb{R}^K_+ \). Normalizing income to 1, the budget set for each consumer can be denoted as \(B(p) \), \(p \in \mathbb{R}^K_+ \), and the consumer’s choice is determined as
\[y = \arg \max_{y \in B(p)} u(y). \]
The econometrician observes a random sample of \((y, p)\). In other words, she observes (a sample analog of) choice probability
\[\Pr(y \in Y \mid \text{price is } p) \]
for each \(Y \subset \mathbb{R}^K_+ \). The question is whether the joint distribution of \((y, p)\) (or the choice probabilities) can be rationalized as an outcome of RUM. Our approach can be very briefly described by the following steps:

- The first insight is that, although demand data are continuous, they can be discretized without any loss of information as long as the set of budgets is finite. Thus, a random utility model of demand on a finite set of budgets is really a model of discrete choice, though the number of distinct choice objects can be large (up to 67 in our empirical application in Section 7). The next steps of our approach immediately apply to choice problems that were discrete to begin with.
- If there is a finite list of discrete choice problems, then there is a finite list of rational “choice types.” Each such type is uniquely characterized by a rationalizable nonstochastic choice pattern. In realistic problem sizes, there are many such types (up to 177352 in our application), and obtaining the list is computationally challenging. Some tricks for efficiently computing the list are an important part of our contribution.
- Think of every rational choice type as defining a vector of degenerate choice probabilities over discrete choice objects. Then a corresponding vector of nondegenerate choice probabilities is consistent with a random utility model iff it is a convex combination of the degenerate ones.

We collect the latter into columns of a matrix; choice probabilities are then rationalizable

\(^1\) Random utility models were originally developed in mathematical psychology, and in principle, our results apply to stochastic choice behavior by an individual as well. However, in such settings it would frequently be natural to impose much more structure than we do.
iff they are in the column cone spanned by this matrix. The same insight informs our test statistic, which will be weighted Euclidean distance of estimated choice probabilities from this cone. In particular, it is computationally convenient to work with this cone and not the polytope that is generated by explicitly imposing that choice probabilities must be proper probabilities.

- The limiting distribution of the test statistic is intricate and, more importantly, depends discontinuously on unknown parameters. Such a feature has been studied extensively in the literature on moment inequalities. However, our problem has characteristics which are not well studied in that literature. In particular, unlike the standard problem where inequality constraints are stated in terms of moments, our inequality constraint is formulated in terms of unidentified parameters which in turn are connected to sample moments. In this sense the standard problem is concerned with ‘direct’ moment inequalities, whereas this paper considers what might be described as ‘indirect’ moment inequalities. Moreover the unidentified parameters are very high dimensional. To overcome these challenges, we generate critical values by a modified bootstrap method that avoids potential inconsistency. The procedure, which we call the ‘tightening’ method, is theoretically closely related to some approaches in the literature on moment inequalities, such as Andrews and Soares (2010), Bugni (2010) and Canay (2010), though the latter papers consider ‘direct’ inequalities. In contrast, the tightening method in our paper resolves difficulties associated with indirect inequalities. It is easy to implement and has practical appeal, potentially in very broad contexts.

In summary, the present paper contributes to the literature by (i) showing that McFadden and Richter’s ARSP, and in particular stochastic rationality of a population, can be tested nonparametrically, and developing computational tools to do so, and (ii) proposing a method based on ‘inequality tightening’ as a way to address statistical and computational problems in dealing with high-dimensional, indirect inequalities being tested by the nonparametric test in (i). We also briefly explain how to carry out counterfactual analysis under ARSP and intend to flesh out this part of the analysis in a companion paper.

2. Related Literature

This paper first and foremost builds on the classic literature on (deterministic and stochastic) revealed preference. Inspired by Samuelson’s (1938) statement of the revealed preference paradigm, Houthakker (1950), Afriat (1967; see also Varian (1982)), and Richter (1966) delineated the precise
content of utility maximization if one observes a single consumer’s demand behavior. For our purposes, this content is embodied in the Strong Axiom of Revealed Preference (SARP): The transitive closure of directly revealed preference must be acyclical.\(^2\) This approach was extended to random utility maximization by Block and Marschak (1960), Falmagne (1978), McFadden and Richter (1991), and McFadden (2005). In particular, McFadden and Richter show that the precise content of random utility maximization – or equivalently, of individual level utility maximization in the presence of unrestricted, unobservable heterogeneity – is expressed by a collection of inequalities collectively dubbed “Axiom of Revealed Stochastic Preference” (ARSP).

These findings resolve this paper’s questions “in the limit” when all identifiable quantities are known. In this idealized setting, they allow one to decide with certainty whether a given demand system or distribution of demands is rationalizable. In reality, estimators of these quantities might fail to be rationalizable because of sampling variation, and one can merely test the hypothesis that data might have been generated by a rational individual or population. For testing individual level rationality, such a test was proposed by Epstein and Yatchew (1985).\(^3\) To the best of our knowledge, we provide the first such test for ARSP.

Perhaps the closest paper to ours in spirit is Manski (2007). In a simple, very abstract discrete choice problem (the universal set of options is a finite and, in practice, small list), he analyzes essentially the same question as we do. In particular, he states the testing and extrapolation problems in the abstract, solves them in simple examples, and outlines an approach to exact finite sample inference. Further results for simple instances of the problem, including results on the degree of underidentification of choice types, were provided by Sher et al. (2011). While we start from a continuous problem and use asymptotic theory rather than exact inference, the settings become similar after our initial

\(^2\)The aforecited papers subtly differ in their handling of indifference. SARP characterizes rationality in the absence of indifference; else, it is sufficient but not necessary. Richter (1966) characterizes rationality if indifference is revealed through set-valued choice. The Afriat inequalities, or equivalently Varian’s (1982) Generalized Axiom of Revealed Preference (GARP), characterize rationality if indifference is permitted but cannot be revealed through set-valued choice.

These differences do not matter in our setting. Observed choice is always unique, hence Richter’s (1966) axiom collapses to SARP. Because nonsatiation will be assumed, GARP differs from SARP only with respect to choice objects that lie on the intersections of budget planes. With continuous demand on finitely many budgets, this case has zero probability (and does not occur in our data). In cases where these subtleties do matter, it would be easy to adopt our approach to any of these variations.

\(^3\)See also the survey by Cherchye et al. (2009) and recent work by Dean and Martin (2011) or Echenique et al. (2011) for other approaches to testing individual level rationality.
discretization step. Our main contribution relative to these papers is to provide the computational toolkit as well as asymptotic theory needed to handle problems of realistic size. Indeed, this toolkit was recently employed for choice extrapolation by Manski (2012).

In a series of highly influential papers, Blundell, Browning, and Crawford (2003, 2008; BBC henceforth) develop a nonparametric approach to conduct demand analysis based on variations in Engel curves. They assume the same observables as we do, and apply their method to the British FES data (we use the same data set in Chapter 7). BBC analyze similar questions to ours, i.e. rationalizability (and extrapolation) of demand, with respect to one individual level demand system generated by nonparametric estimation of Engel curves from these data. This approach could be loosely summarized as revealed preference analysis of a representative consumer (and in practice, given their specific estimation technique, of average demand). One possible foundation for it was provided by Lewbel (2001), who gives conditions on the random part of a random utility model that ensure integrability of mean (expected) demand. Lewbel’s (2001) assumptions therefore precisely delineate one possible bridge between BBC’s assumptions and ours.

Hoderlein and Stoye (2010) again use the same assumptions and the same data but ask different questions. They bound from above and below the fraction of the population who violate the weak axiom of revealed preference (WARP). As a corollary (namely, by exhibiting the conditions under which the lower bound is zero), they show what discipline is put on the data by WARP alone. In the very special case of two goods, their results are formally connected to ARSP because WARP implies SARP (Rose (1958)), thus their corollary and ARSP must have the same specialization. This specialization is developed, and some implications are pointed out, in follow-up work (Stoye and Hoderlein (2011)). The latter paper contains no asymptotic theory, and the asymptotic theory in Hoderlein and Stoye (2010) is not closely related to ours.

Finally, our approach can be usefully contrasted to the recently active literature on invertibility of demand, that is, on conditions under which individual demand can be backed out from observation of repeated cross-sections. See Beckert and Blundell (2007), Berry, Gandhi and Haile (2011), and references therein. Unsurprisingly, invertibility requires substantial assumptions on structural parameters, i.e. utility functions and/or their distributions, which we avoid. The paper in this literature that is perhaps closest to ours is Blundell, Kristensen, and Matzkin (2011), who investigate nonparametric extrapolation of demand and, compared to our setting, essentially add only invertibility. Other than by adding this assumption, their paper differs from ours by restricting attention to two goods. The extension of their approach to more than two goods is a challenging problem.
3. Methodology

Following McFadden and Richter (1991) as well as many of the aforecited references, we presume a finite number of budgets \(p \in \{p_1, \ldots, p_J\} \). Indexing the budget sets as \(B_j = B(p_j) \), we can drop \(p \) from the notation. The choice probability functions are now:

\[
\pi(y \in Y|B_j) := \Pr(y \in Y|\text{budget is } B_j), \quad Y \subset \mathcal{Y}.
\]

The space of choices \(\mathcal{Y} \subset \mathbb{R}_+^K \) is unrestricted. In particular, it can be – and is, in our application – continuous. However, the following, important observation much simplifies the problem. For every budget \(B_j \), let the \(I_j \) elements of \(\{x_{1|j}, \ldots, x_{I_j|j}\} \) form the coarsest partition of \(B_j \) such that no budget plane other than \(B_j \) intersects the interior of any one element of the partition. In words, \(\{x_{1|j}, \ldots, x_{I_j|j}\} \) has the property that its elements are disjoint, that \(B_j = \bigcup_{i=1}^{I_j} x_{i|j} \), and also that for any \(k = 1, \ldots, J \), any \(i = 1, \ldots, I_j \), and any \(y_1, y_2 \in x_{i|j} \), one has \((p_k y_1 - 1)(p_k y_2 - 1) \geq 0 \); furthermore, \(\{x_{1|j}, \ldots, x_{I_j|j}\} \) is the coarsest such partition. Henceforth, we use the word “patch” to denote a generic element of \(\mathcal{X} := \{\{x_{i|j}\}_{i=1}^{I_j}\}_{j=1}^J \). For the simplest nontrivial example, let there be \(J = 2 \) budgets that intersect, then there is a total of four patches: two on \(B_1 \), where one is above \(B_2 \) and the other one is below it, and two patches on \(B_2 \), where one is above \(B_1 \) and one is below it.

The only restrictions we impose in individual consumers’ behavior are monotonicity (“more is better”) and the Strong Axiom of Revealed Preference (SARP); equivalently, we assume that each consumer maximizes some nondecreasing utility function. The important observation is that in our setting, monotonicity only constrains choice to be on budget planes, and SARP only restricts whether choice can simultaneously be above certain budgets and below others. Therefore, two consumers who exhibit different demand behavior but for every budget, choose from the same patch of the budget plane, are either both consistent with our RUM or both fail it. In short, the model enforces that the probability distribution of demand is supported on the patches and furthermore constrains the implied distribution over patches but not the distributions on them. We can, therefore, restrict the choice space to be \(\mathcal{X} \), effectively rendering the choice problem discrete with a total of \(I := \sum_{j=1}^J I_j \) choice objects. Hence, the number of distinct nonstochastic choice types is large (in applications of practical interest) but finite. We will now explain how to efficiently encode these. To do so, arrange

4The theory was extended to the continuous case in McFadden (2005), and we discuss prospects for the analogous extension of our approach in the conclusion.

5In a setting characterized by choice from linear budgets, this is furthermore equivalent to assuming maximization of strictly concave utility (Varian (1982)).
\(\mathcal{X} \) as a vector

\[
\mathcal{X} = (x_{1|1}, x_{2|1}, \ldots, x_{I|J})'
\]

and similarly write

\[
\pi_{ij} := \Pr(y \in x_{ij}|B_j),
\]

\[
\pi_j := (\pi_{1|j}, \ldots, \pi_{I|j})',
\]

\[
\pi := (\pi_1', \ldots, \pi_J') = (\pi_{1|1}, \pi_{2|1}, \ldots, \pi_{I|J})',
\]

then the \(I \)-vector \(\pi \) contains all information that is relevant for testing RUM.

Any conceivable pattern of nonstochastic choice behavior can be identified with a binary \(I \)-vector \(a \) that formally corresponds to a degenerate \(\pi \), i.e. a component of \(a \) equals 1 iff the corresponding component \(x_{ij} \) of \(\mathcal{X} \) is chosen from budget \(B_j \). The number of such vectors \(\prod_{j=1}^{J} I_j \) is finite but increases rapidly as budgets are added. However, the subset of these vectors that are consistent with the theory to be tested will frequently be of smaller order of magnitude, as in the case of our empirical application in Section 7.

For the remainder of this paper, a vector \(a \) is called permissible if it is rationalizable in terms of a utility function, i.e. if it can be written as \(a(u^*)_{ij} = 1\{\arg \max_{y \in B_j} u^*(x) \in x_{ij}\} \) for some \(u^* \in U \).

In our setting, this is the case iff behavior encoded in \(a \) fulfills SARP, but we emphasize that the approach could be modified by imposing more or less structure on \(a \) and thereby on agents’ behavior.

Let \(\{a_1, \ldots, a_H\} \) be the collection of permissible vectors, thus each \(a_h, 1 \leq h \leq H \) represents a possible “choice type” over \(\mathcal{X} \). Define the \((I \times H)\)-matrix \(A = [a_1, \ldots, a_H] \), then a vector of choice probabilities \(\pi \) is stochastically rational iff there exists \(\nu \in \Delta^{H-1} \) such that \(A\nu = \pi \). In other words, \(\pi \) must be a convex combination of the columns of \(A \). The weights \(\nu \) can be interpreted as implied population distribution over rational choice types (although recall that we do not impose discreteness or any other restriction on the underlying distribution of unobserved heterogeneity in utility).

To see how little structure is placed on the model, observe how invertibility of demand, i.e. recoverability of individual consumers’ demand, fails on many levels. First, we consider finitely many budgets, so with unconstrained heterogeneity, any given demand pattern is rationalizable iff it is rationalizable by infinitely many utility functions. Second, every column \(a \) represents a continuum of observationally distinguishable, rationalizable demand patterns because of the lumping of continuous demand data into patches. Third, \(\nu \) is not identified; our empirical application features scenarios like 50 patches, 42 independent choice probabilities, yet 42625 rational choice types, so \(A \) is very far from
full column rank, and a \(\pi \) that is rationalizable at all will typically be rationalizable by a set of vectors \(\nu \). We return to partial identification of \(\nu \) in section 8.1.

McFadden and Richter (1991; see also McFadden (2005, theorem 3.3)) anticipated the possible discretization of choice space in our setting and also noted various equivalent statements for the empirical content of RUM. For example, \(\nu \) as required here exists iff the linear program

\[
\begin{align*}
\min_{\nu \geq 0, s \geq 0} & \quad \nu, s \\
\text{s.t.} & \quad A \nu + s \geq \pi, 1_H \nu \leq 1
\end{align*}
\]

has an optimal solution with \(s = 0 \). However, we employ the first statement verbalized above, thus we directly test:

(\(H_A \)): There exist a \(\nu \in \Delta^{H-1} \) such that \(A \nu = \pi \),

where \(\Delta^{H-1} \) denotes the \(H - 1 \)-dimensional unit simplex. To test this hypothesis, we transform it as follows. First, note that \(1'_I A = [J, ..., J] \) and \(1'_{1_h} \pi = J \) hold by definition. Therefore once \(A \mu = \pi \) is satisfied, \(1'_H \nu = 1 \) holds automatically. Thus (\(H_A \)) is equivalent to

(\(H_B \)): There exist a \(\nu \) such that \(A \nu = \pi, \nu \geq 0 \).

It is easy to see that Hypothesis (\(H_B \)) is, in turn, equivalent to

(\(H_C \)): \[\min_{\eta \in C} [\pi - \eta]' \Omega [\pi - \eta] = 0, \]

where \(\Omega \) is a positive definite matrix and \(C := \{ A \nu | \nu \geq 0 \} \). Note that the constraint set \(C \) is a cone in \(\mathbb{R}^I \). The solution \(\eta_0 \) of (\(H_C \)) is the projection of \(\pi \in \mathbb{R}^I \) onto the cone, under the weighted norm \(\| x \|_\Omega = \sqrt{x' \Omega x} \). The corresponding value of the objective function is the square of the length of the projection residual vector. The projection \(\eta_0 \) is unique, but the corresponding \(\nu \) is not. Stochastic rationality holds if and only if the length of the residual vector is zero.

A natural sample counterpart of the objective function in (\(H_C \)) would be \(\min_{\eta \in C} [\hat{\pi} - \eta]' \Omega [\hat{\pi} - \eta] \), where \(\hat{\pi} \) is an estimator of \(\pi \), for example by the vector of sample choice frequencies. It is useful to normalize this sample counterpart by \(N \) to obtain an appropriate asymptotic distribution, so define

\[
J_N := N \min_{\eta \in C} [\hat{\pi} - \eta]' \Omega [\hat{\pi} - \eta] = N \min_{\nu \in \mathbb{R}^{H}_+} [\hat{\pi} - A \nu]' \Omega [\hat{\pi} - A \nu].
\]
Once again, ν is not unique at the optimum, but $\eta = A\nu$ is. Call its optimal value $\hat{\eta}$, noting that $\hat{\eta}$ can also be thought of as rationality-constrained estimator of choice probabilities. Then $\hat{\eta} = \hat{\pi}$, and $J_N = 0$, iff the estimated choice probabilities $\hat{\pi}$ are stochastically rational; obviously, our null hypothesis will be accepted in this case. To determine an appropriate critical value for our test, we will have to estimate the distribution of J_N. This estimation problem is rather intricate and will be handled in section 5.

4. Computation

We now turn to computational implementation of our approach. The challenge is threefold: First, how to encode the choice set X; second, how to generate the matrix A, and last, how to carry out the constrained minimization in the definition of J_N. We explain our response to these issues in this order.

4.1. Encoding X. We will express the choice set X by an $I \times J$ matrix denoted by X, each row of which represents an element of X. In the remainder of this section, we use a single index $i = 1, \ldots, I$ to express this set, that is, we write $X = \{x_i\}_{i=1}^I$. This is more convenient than the double index expression $X = \{\{x_{ij}\}_{i=1}^I\}_{j=1}^J$ we used before, for the purpose of this section. Each x_i is a polyhedron, though it is simpler to characterize it by a $1 \times J$ trinomial vector. Let $X_{ij} = \begin{cases}
-1 & \text{if } x_i \text{ is below } B_j \\
0 & \text{if } x_i \text{ is on } B_j \\
+1 & \text{if } x_i \text{ is above } B_j
\end{cases}$, $j = 1, \ldots, J,$ then we can represent each x_i by the $1 \times J$ vector

$$X_i = [X_{i1}, \ldots, X_{iJ}], \ i = 1, \ldots, I.$$

The choice set is represented by the $I \times J$ matrix $X = [X_1', \ldots, X_I']'$ with typical cell X_{ij} as defined above. Our algorithm for generating X from budget data (p_1, \ldots, p_J) is as follows: First, generate all possible X_i’s, ignoring non-negativity constraints. This leads to a matrix with J columns and $\sum_{j=1}^J 2^{J-j}$ rows. Next, remove invalid rows by testing validity of each row. To illustrate this step, suppose $J = 5$ with K goods, and we want to verify whether $(0, -1, 1, 1, 1)$ is a valid row of X, i.e. whether it encodes an existing patch x_i. It is easy to see that this is the case iff the system of $(J + 1 + K)$ inequalities

$$p_1' y \leq 1, p_1' y \geq 1, p_2' y \leq 1, p_3' y \geq 1, p_4' y \geq 1, p_5' y \geq 1, y \geq 0$$

has a solution. This can in principle be checked by repeated application of the Fourier-Motzkin (FM) elimination algorithm, but in practice this is feasible only for small problems (roughly up to ten inequalities). A more efficient approach is to use numerical solvers that have the capacity to just check consistency of a set of linear inequality constraints. Using the CVX optimization package (Grant and Boyd (2008, 2011)), we find that checking the above inequalities is computationally inexpensive even for rather high dimensional commodity spaces.

4.2. Computing A. To compute the matrix A, write

$$A = \{a_{ih}\},$$

where a_{ih} is an indicator variable that equals 1 if choice type h picks patch x_i from budget B_j, where B_j contains x_i. (As with the patches X, it is convenient for this section’s purpose to index rows of A by $i = 1, ..., I$ instead of the double index ij.) The challenge is to compute the matrix so that a nonstochastic choice type is represented as a column of A iff she is rationalizable, that is, the incomplete preference ordering revealed by her choice behavior is acyclical. To do this, we must first extract the preferences revealed by a choice type, then check for acyclicity. The following fact is crucial for the first step: Choice of x_i from budget B_j reveals that $x_i \succ x_m$ for every choice object x_m s.t. $X_{mj} \in \{-1, 0\}$ (the symbol \succ signifies the revealed preference relation). Here, $X_{mj} = 0 \Rightarrow x_i \succ x_m$ follows directly because x_i was chosen over x_m; $X_{mj} = -1 \Rightarrow x_i \succ x_m$ follows by additional uses of “more is better” and transitivity because x_i was chosen over some object that dominates x_m.

Note finally that if applied to all choices, then these implications exhaust the revealed preference implications of choice behavior. In a second step, acyclicity of a given set of revealed preferences can be checked by the Floyd-Warshall algorithm, efficient implementations of which are readily available.

We implemented three ways to generate A. First, a “brute force” approach initially creates a matrix A^{max} that represents all possible choice combinations from J budgets, thus it is of size $I \times \prod_{j=1}^{J} I_j$. Every column of A^{max} is then checked for rationality. This approach has the benefit of also collecting irrational types, which can be handy for simulations, but gets unwieldy rapidly because the number of columns of A^{max} grows extremely rapidly as budgets are added.

Our second approach is a “crawling” algorithm. Here, the core insight is that all possible choice patterns can be associated with terminal nodes of a decision tree whose initial node corresponds to choice from B_1, the next set of nodes to choice from B_2, and so on. The algorithm exhaustively crawls this tree. The important trick is to check for choice cycles at every node that is visited and, if a cycle

6Appendix B contains a more detailed description, including pseudo-code for some algorithms.
is detected, to abandon the entire branch, i.e. to not visit any successor of the node just visited. A column of A is discovered every time that a terminal node is visited without detecting a cycle. The abandoning of entire branches means that a strong majority of nonrationalizable choice patterns is never visited. For example, if a cycle is detected after specifying behavior on 4 out of 10 budgets, then none of the many possible completions of this choice pattern are considered. The downside is more frequent (for any rational pattern that is detected) execution of the Floyd-Warshall algorithm, but this algorithm is cheap (it terminates in polynomial time). The net effect is to improve computation time by orders of magnitude in complicated problems. Indeed, this is the most powerful algorithm we provide here as a generic procedure, which is applicable to every conceivable patterns of choice problems.

Finally, a modest amount of problem-specific adjustment can lead to further, dramatic improvement in many applications, including the one conducted later in this paper. The key to this is contained in the following proposition, which is established in appendix A.

Proposition 4.1. Suppose that for some $M \geq 1$, none of (B_1, \ldots, B_M) intersect B_j. Suppose also that choices from (B_1, \ldots, B_{J-1}) are jointly rationalizable. Then choices from (B_1, \ldots, B_J) are jointly rationalizable iff choices from (B_{M+1}, \ldots, B_J) are.

This proposition is helpful whenever not all budgets mutually intersect. To exploit it in applications, one must manually check for such sets of budgets and possibly be willing to reorder budgets. The benefit is that if the proposition applies, all rationalizable choice patterns across J budgets can be discovered by checking for rationalizable choice patterns on smaller domains and then combining the results. In particular, proposition 1 informs the following strategy: Compute first a matrix A that collects rationalizable choice patterns on $(B_{M+1}, \ldots, B_{J-1})$. Next, for each such pattern, find all rationalizable completions of it to choice on (B_1, \ldots, B_{J-1}) as well as all rationalizable completions to (B_{M+1}, \ldots, B_J). (For the first of these steps, one may further economize by computing all rationalizable patterns on (B_1, \ldots, B_M) in a preliminary step.) Every combination of two such completions is itself a rationalizable choice pattern. Note that no step in this algorithm checks rationality on J budgets at once; furthermore, a Cartesian product structure of the set of rationalizable choice patterns is exploited. The potential benefit is substantial – in our application, the refinement frequently improves computation times by orders of magnitude.

4.3. **Computing J_N.** Computation of J_N is a quadratic programming problem subject to possibly a large number of linear inequality constraints. We have nothing to add to the theory of solving such
problems, though we utilize modern numerical solvers that can handle high-dimensional quadratic programming problems. Our currently preferred implementation utilizes \texttt{CVX}. We also implemented computation of J_N with \texttt{fmincon} (using stepwise quadratic programming) and Knitro. All solvers agree on those problems that they can handle, with \texttt{fmincon} being practical only for rather small problem sizes.

4.4. Summary. The above algorithms for computation of X, A, and J_N are readily applicable to actual problems with reasonable dimensionality, therefore they work for empirically interesting and relevant applications as we demonstrate in Section 7. To ensure understanding of the procedure, reconsider the simplest nontrivial example, i.e. two budgets which intersect. In this case $J = 2$ and $I_1 = I_2 = 2$, yielding $I = 4$ patches, and we have

$$X = \begin{bmatrix} 0 & -1 \\ 0 & 1 \\ -1 & 0 \\ 1 & 0 \end{bmatrix}, \quad A = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 1 \\ 0 & 0 & 1 \\ 1 & 1 & 0 \end{bmatrix}, \quad \pi = \begin{bmatrix} \Pr(x_1 \text{ is chosen}|\text{budget is } B_1) \\ \Pr(x_2 \text{ is chosen}|\text{budget is } B_1) \\ \Pr(x_3 \text{ is chosen}|\text{budget is } B_2) \\ \Pr(x_4 \text{ is chosen}|\text{budget is } B_2) \end{bmatrix}.$$

Here, the first row of X represents the part of budget B_1 that is below B_2 and so on. Rows of A corresponds to rows of X, whereas its columns correspond to types; thus, the first column of A indicates the rational choice type whose choice from B_1 is below B_2 but whose choice from B_2 is above B_1 (thus this particular type is better off under budget B_2). There are four logically possible choice types, but one of them, namely $[1, 0, 1, 0]^\prime$, would violate the weak axiom of revealed preference and is therefore not represented in A. Given an estimator $\hat{\pi} = (\hat{\pi}_1, \hat{\pi}_2, \hat{\pi}_3, \hat{\pi}_4)^\prime$ for π and setting $\Omega = I_2$, one can then easily verify that $J_N = N \cdot (\max\{\hat{\pi}_1 + \hat{\pi}_3 - 1, 0\})^2$. In particular, the test statistic J_N is zero if $\hat{\pi}_1 + \hat{\pi}_3 \leq 1$, and in that case we immediately conclude that the data is consistent with the random utility model.

The example reproduces the known finding (Matzkin (2006), Hoderlein and Stoye (2009)) that with two budgets, the content of stochastic rationality is exhausted by the restriction “$\pi_1 + \pi_3 \leq 1$” on population choice probabilities. However, the tools proposed here allow one to perform similar computations for very complicated examples. Think of the size (or the dimensions) of A, that is, “number of patches \times number of rational choice types,” as an indicator of problem complexity. Then the example just given has the dimensions of (4×3), but our algorithms successfully solved problems with much higher dimensions in our empirical application, including cases where the dimensions of A are (67×149570) and (64×177352); note that this includes 2000 bootstrap replications for each case.
The computational bottlenecks in implementation are twofold: Computation of A took several hours in some cases (although reduced to minutes using proposition 4.1), and computation of J_N (which the bootstrap iterates over) took up to a minute.

5. Inference

We now turn to inferential procedures to deal with the hypothesis (H_A) or its equivalent forms. We initially assume that choice probabilities were estimated by sample frequencies. Thus, let

$$d_{j,n} = \begin{cases}
1 & \text{if consumer } n \text{'s budget is } B_j \\
0 & \text{otherwise}
\end{cases}$$

and

$$d_{i|j,n} = \begin{cases}
1 & \text{if } x_{ij} \text{ is chosen from } B_j \\
0 & \text{otherwise.}
\end{cases}$$

Assume that one observes a random sample $\{(d_{j,n},d_{i|j,n})\}_{i=1}^{I_j} \sim \{j=1, \ldots, N\}$, then

$$\hat{\pi}_{ij} = \frac{\sum_{n=1}^{N_j} d_{i|j,n}/N_j, N_j = \sum_{n=1}^{N} d_{j,n}}{N_j} \text{ (thus } N = \sum_{j=1}^{J} N_j).$$

The aim is to estimate the sampling distribution of J_N under the null hypothesis that the true π is rationalizable. This problem is closely related to the literature on inequality testing, which is often concerned with hypotheses of the form

$$H_0 : B\theta \geq 0 \quad B \in \mathbb{R}^{pq} \text{ is known.}$$

With an (asymptotically) normal estimator so that $\sqrt{N}(\hat{\theta} - \theta) \approx N(0, S)$, one can form

$$T_N := \min_{\eta \in \mathbb{R}^q} N[B\hat{\theta} - \eta]S^{-1}[B\hat{\theta} - \eta].$$

More precisely, Guggenberger, Hahn and Kim (2007) consider specification testing of linear moment inequality models of the form $C\theta \leq E[x]\theta \in \mathbb{R}^m$ where C is a known conformable matrix, and propose to test its equivalent form $RE[x] \geq 0$ where R is another known matrix. This equivalence follows from the Weyl-Minkowski Theorem, as discussed later in this section. Our test of ARSP can be formally regarded as a specification test of this kind, though our testing procedure is quite different. In particular, we avoid resorting to Weyl-Minkowski equivalence because doing so is computationally infeasible.
a critical value for T_N is to consider the least favorable case, which is $\theta = 0$. This strategy is inappropriate in the present context for a number of reasons. First, the vector π is a collection of probability vectors, so its least favorable value cannot be at the origin. Second, as discussed later, direct application of the above results to our problem is not computationally feasible. Third, even in the absence of the two obstacles, the suggested least favorable distribution can lead to an unnecessarily conservative procedure. Alternatively, one might consider a resampling method. As noted in the literature of set-identified models, the main difficulty in calculating a valid critical value for J_N is the treatment of points where more than one inequality is (almost) binding. This invalidates the naive bootstrap and like methods. For this and related issues, see, for example, Imbens and Manski (2004), Chernozhukov, Hong and Tamer (2007), Stoye (2009), Andrews and Soares (2010), Bugni (2010), and Romano and Shaikh (2010).

There are three methods for inference that can be potentially used to calculate a critical value for the statistic J_N. They are: (1) Regularization-based method, (2) Inequality selection method, and (3) “Inequality tightening.” We now discuss them in turn. It is trivial that $\sqrt{N}(\hat{\pi} - \pi) \rightarrow_d N(0, S)$ holds, where S is the asymptotic covariance matrix. Let \hat{S} denote a consistent estimator for S. The first approach, the method based on regularization, is easy to implement. This is basically the idea behind subsampling and the m-out-of-n bootstrap. Let $\tilde{\eta}_h := \hat{\eta} + \hat{\pi} N(0, \hat{S}) h$ be a subsampled or m-out-of-n bootstrapped version of $\hat{\eta}$. Recall that $\hat{\eta}$ is the projection of the choice frequency vector $\hat{\pi}$ onto the cone C. The factor h is a sequence that goes to infinity slowly. The random variable $\tilde{\eta}_h$ is essentially a subsampled or m-out-of-n bootstrapped version of $\hat{\eta}$. Define $\tilde{J}_N(h) := \frac{N}{h} \min_{\nu \in \mathbb{R}^H_+} \{\hat{\eta}_h - A\nu\}' \Omega [\hat{\eta}_h - A\nu]$. The distribution of $\tilde{J}_N(h)$ can be evaluated by simulation. It provides a valid approximation of the distribution of J_N asymptotically, regardless of the position of η_0, the population version of $\hat{\eta}$, on the cone C. This is convenient computationally, though Andrews and Guggenberger (2009, 2010) forcefully argue that this approach can suffer from potential conservatism, often very severely. The second approach is based on inequality selection. This is essentially the so-called moment selection procedure proposed for moment inequality models (see, e.g., Andrews and Soares, 2010, Bugni, 2010). While the problem at hand is not exactly a moment inequality model, it does apply to the statistic J_N at least in theory. The idea of this procedure is that when $\hat{\eta}$ is close to the region where multiple constraints bind, it forces them to bind. The constraint set $C = \{A\nu | \nu \geq 0\}$ in the definition of J_N is expressed in terms of ν. Recall that ν corresponding to the projection η_0 is unidentified. Let $\{a_1, a_2, ..., a_H\}$ be the column vectors of an matrix A. Define

$$\text{cone}(A) = \{\nu_1 a_1 + ... + \nu_H a_H : \nu_h \geq 0\}$$,
then $C = \text{cone}(A)$. This is called the V-representation of the cone C in the literature of convex geometry (see, e.g., Ziegler, 1995). The V-representation is not useful in detecting whether $\hat{\eta}$ is close to an irregular point or not, and an alternative form expressed in terms of η has to be obtained. A result known as Weyl’s Theorem guarantees that that is possible theoretically: it says that if a set C in \mathbb{R}^J is represented as $\text{cone}(A), A \in \mathbb{R}^{I \times H}$, we can write

$$C = \{t \in \mathbb{R}^J | Bt \leq 0\}$$

for some $B \in \mathbb{R}^{m \times J}$.

The last line is called the H-representation of C. (The converse is also true and known as Minkowski’s Theorem.) Applying Weyl to the definition of J_N, obtain

$$J_N = \min_{t \in \mathbb{R}^I: Bt \leq 0} N[\hat{\pi} - t]'\Omega[\hat{\pi} - t].$$

The optimal t ($:= \hat{t}$) is unique, and it is now possible to apply the inequality selection procedure. Let κ be a sequence that diverges slowly to infinity. Let $b_1, ..., b_m$ be the row vectors of B. Suppose (wlog) $-\sqrt{N}b_1 \hat{t} \leq \kappa, ..., -\sqrt{N}b_f \hat{t} \leq \kappa$ and $-\sqrt{N}b_{f+1} \hat{t} \geq \kappa, ..., -\sqrt{N}b_m \hat{t} \geq \kappa$ hold. Let $B_1 = [b_1', ..., b_f']'$ and $B_2 = [b_{f+1}', ..., b_m']'$. Redo the above minimization, but this time

$$\min_{t \in \mathbb{R}^I: B_1 t = 0, B_2 t \leq 0} N[\hat{\pi} - t]'\Omega[\hat{\pi} - t].$$

Let \hat{t}_{select} denote the minimizer and define $\tilde{\eta}_\kappa := \hat{t}_{\text{select}} + \frac{1}{\sqrt{N}} N(0, \hat{S})$. The distribution of

$$\tilde{J}_N(\kappa) = \min_{t \in \mathbb{R}^I: Bt \leq 0} N[\tilde{\eta}_\kappa - t]'\Omega[\tilde{\eta}_\kappa - t].$$

offers a valid approximation to the distribution of J_N. This is expected to work well in finite samples, though it is computationally infeasible in the present context. To our knowledge, implementing Weyl’s Theorem to obtain an H-representation out of the V-representation is done by repeated application of (some variation of) the Fourier-Motzkin elimination algorithm, which is notoriously difficult to apply when the dimension of ν is high. This is exactly the case for the problem considered in this subsection, even for a small number of budgets.

The third approach, dubbed “inequality tightening” above, sidesteps the need for an H-representation of C, and therefore it is simple to implement and applicable to problems of a realistic size. The idea is to “tighten” the constraint by replacing

$$\nu \geq 0$$

with

$$\nu \geq \tau_N 1_H$$
for some positive scalar τ_N that declines to zero slowly. The vector 1_H can be some other fixed H-vector. Now solve

$$J_N(\tau_N) := \min_{\eta \in C_{\tau N}} N[\hat{\pi} - \eta]'\Omega[\hat{\pi} - \eta]$$

$$= \min_{[\nu - \tau N 1_H] \in \mathbb{R}^H_+} N[\hat{\pi} - A\nu]'\Omega[\hat{\pi} - A\nu]$$

where $C_{\tau N} := \{A\nu | \nu \geq \tau_N 1_H\}$, and let $\hat{\eta}_{\tau N}$ denote the solution. The constraints that are almost binding at the solution (i.e. the ones with little slack) in the original statistic should be binding with zero slack after tightening. Let $\bar{\eta}_{\tau N} := \hat{\eta}_{\tau N} + \frac{1}{\sqrt{N}} N(0, \hat{S})$. Notice that, as in the inequality selection procedure, no regularization (or subsampling/m-out-of-n bootstrapping) is necessary at this stage. Finally, define

$$\tilde{J}_N(\tau_N) := \min_{\eta \in C_{\tau N}} N[\bar{\eta}_{\tau N} - \eta]'\Omega[\bar{\eta}_{\tau N} - \eta]$$

$$= \min_{[\nu - \tau N 1_H] \in \mathbb{R}^H_+} N[\bar{\eta}_{\tau N} - A\nu]'\Omega[\bar{\eta}_{\tau N} - A\nu],$$

and use its distribution to approximate that of J_N. This has the same theoretical justification as the inequality selection procedure. Unlike the latter, however, it avoids the use of H-representation, thus it does not require Fourier-Motzkin type algorithms. It offers a computationally feasible empirical testing procedure for stochastic rationality.

Canay (2010) also proposes to tighten a moment inequality, then apply empirical likelihood-based bootstrap to it. We think this is a potentially very important contribution, but its nature is quite distinct from that of ours. Like many other papers in this area, Canay (2010) analyzes inequalities that are stated in terms of moments, i.e. what we called ‘direct moment inequalities’ in the overview in Section 1. Obtaining ‘direct inequalities’ in our problem would amount to transforming our original V-representation to a H-representation. If this were possible, we could do it and then apply either moment selection method as in Andrews and Soares (2010) or Bugni (2010) or alternatively, Canay’s (2010) method. But the very point of our approach is to avoid this transformation because it is impossible to implement in practice. Our tightening procedure applies to an indirect inequality model, which, in our problem, is defined in terms of the numerically convenient V-representation only. As we shall see in Section 7, this enables us to deal with very high-dimensional problems that appear in our empirical analysis.

Let b'_k denote the k-th row vector of the $m \times I$ matrix B. We maintain the following condition.

Assumption 5.1.
(1) \[\{(d_{j,n}, d_{i|j,n})\}_{i=1}^{I_j} \] for \(j \in \mathcal{J}, n = 1, \ldots, N \) are iid across \(n \);
(2) \(0 < \pi_j \) for \(1 \leq j \leq J \).

The structure of our problem implies that the above condition corresponds to condition (2.2) in AS10. Let \(F \) denote the distribution of \(\{(d_{j,n}, d_{i|j,n})\}_{i=1}^{I_j} \) for \(J, j = 1, n = 1, \ldots, N \). The symbol \(\mathcal{F} \) signifies the set of all distribution functions that satisfy the above assumption.

Theorem 5.1. Choose \(\tau_N \) so that \(\tau_N \downarrow 0 \) and \(\sqrt{N} \tau_N \uparrow \infty \). Then

\[
\liminf_{N \to \infty} \inf_{F \in \mathcal{F}} \Pr\{J_N \leq \hat{c}_{1-\alpha}\} = 1 - \alpha
\]

where \(\hat{c}_{1-\alpha} \) is the \(1 - \alpha \) quantile of \(\tilde{J}_N(\tau_N) \), \(0 \leq \alpha \leq \frac{1}{2} \).

Proof: See Appendix A.

6. Bootstrap Algorithm with Tightening

This section details how to simulate the distribution of \(J_N \) with a bootstrap procedure that employs Theorem 5.1. First, we apply the standard nonparametric bootstrap to obtain resampled unrestricted choice probability vector estimates \(\hat{\pi}^*(r) \), \(r = 1, \ldots, R \), where \(R \) denotes the number of bootstrap replications. This provides the bootstrap distribution estimate as the distribution of \(\hat{\pi}^*(r) - \hat{\pi}, r = 1, \ldots, R \), where, as before, \(\hat{\pi} \) denotes the unrestricted choice probability vector. We need to generate the bootstrap samples under the null, however. A naive way to achieve this would be to center it around the restricted estimator \(\hat{\eta} \), that is

\[
\hat{\pi}_{naive}^*(r) = \hat{\pi}^*(r) - \hat{\pi} + \hat{\eta}, \quad r = 1, \ldots, R.
\]

Recall that \(\hat{\eta} \) is the solution to

\[
J_N := N \min_{\eta \in \mathcal{C}} [\hat{\pi} - \eta]' \Omega [\hat{\pi} - \eta]
\]

\[
= N \min_{\nu \in \mathbb{R}^H} [\hat{\pi} - A\nu]' \Omega [\hat{\pi} - A\nu].
\]

But \(\hat{\pi}_{naive}^* \) is invalid due to standard results about the failure of the bootstrap in discontinuous models (e.g., Andrews (2000)). The “tightening” remedy is to center it instead around the tightened restricted estimator. More precisely, our procedure is as follows:
(i) Obtain the τ_N-tightened restricted estimator $\hat{\eta}_{\tau_n}$, which solves

\[
J_N := \min_{\eta \in C_{\tau_N}} N[\hat{\pi} - \eta]'\Omega[\hat{\pi} - \eta] = \min_{[\nu - \tau_N1_H] \in \mathbb{R}_+^H} N[\hat{\pi} - A\nu]'\Omega[\hat{\pi} - A\nu]
\]

(ii) Calculate the bootstrap estimators under the restriction, using the recentering factor $\hat{\eta}_{\tau_n}$ obtained in (i):

\[
\hat{\pi}^{s(r)}_{\tau_n} := \hat{\pi}^{s(r)} - \hat{\pi} + \hat{\eta}_{\tau_n}, \quad r = 1, ..., R.
\]

(iii) Calculate the bootstrap test statistic by solving the following problem:

\[
J_N^{s(r)}(\tau_N) := \min_{\eta \in C_{\tau_N}} N[\hat{\pi}^{s(r)}_{\tau_n} - \eta]'\Omega[\hat{\pi}^{s(r)}_{\tau_n} - \eta] = \min_{[\nu - \tau_N1_H] \in \mathbb{R}_+^H} N[\hat{\pi}^{s(r)}_{\tau_n} - A\nu]'\Omega[\hat{\pi}^{s(r)}_{\tau_n} - A\nu],
\]

for $r = 1, ..., R$.

(iv) Use the empirical distribution of $J_N^{s(r)}(\tau_N), r = 1, ..., R$ to obtain the critical value for J_N.

This method relies on a tuning parameter τ_N which plays the role of a similar tuning parameter in the moment selection approach (namely, the parameter labeled κ in Andrews and Soares (2010)). In a simplified procedure in which the unrestricted choice probability estimate is obtained by simple sample frequencies, one reasonable choice would be

\[
\tau_N = \sqrt{\frac{\log N}{N}}
\]

where N is the minimum of the ‘sample size’ across budgets: $N = \min_j N_j$ (N_j is the number of observations on Budget B_j; see (5.1)). The logarithmic penalization corresponds to the Bayes Information Criterion. The use of N can probably be improved upon, but suffices to ensure validity of our inference.

In our current analysis, the estimator $\hat{\pi}$ is a kernel estimator, so the above formula needs to be modified. Let h_j be the bandwidth applied to Budget B_j. Then an appropriate choice of τ_N is obtained by replacing N_j in the definition above with the “effective sample size” N_jh_j. That is:

\[
\tau_N = \sqrt{\frac{\log Nh}{Nh}}
\]
where \(\bar{N} h = \min_j N_j h_j \). Strictly speaking, asymptotics with nonparametric smoothing involve bias, and the bootstrap does not solve the problem. A standard procedure is to claim that one used undersmoothing and can hence ignore the bias. We follow this convention.

7. Empirical Application

We apply our methods to data from the U.K. Family Expenditure Survey, the same data used by Blundell, Browning, and Crawford (2008, BBC henceforth). To facilitate comparison of results, we use the same subset of these data as they do, namely the time periods from 1975 through 1999, households with a car and at least one child, and also the same composite goods, namely food, nondurable consumption goods, and services (with total expenditure on the three standing in for income).

To test random utility models, our strategy is to extract one budget per year, which corresponds to that year’s median expenditure. We then estimate the distribution of demand on that budget by kernel density estimation applied to budget shares, where the kernel is normal, the bandwidth was chosen according to Silverman’s rule of thumb, and the underlying distance metric was \(\log(\text{income}) \) (thus spending 10% more or 10% less than the median was considered equidistant from it). Like BBC, we assume that all consumers in one year face the same prices, and we use their price data. While budgets have a tendency to move outward over time, we find that there is substantial overlap of budgets. Thus, our analysis is not subject to the frequently reported problem that revealed preference tests are near vacuous because income gains dominate relative price changes. At the same time, the tendency of budgets to move outward means that budgets which are more than a few years apart do not tend to overlap, making the refinement of our crawling algorithm via Proposition 4.1 very powerful in this application.

It is computationally prohibitively difficult to test stochastic rationality on all 25 periods at once, so we rather work with all possible sets of eight consecutive periods. This leads to a collection of 18 matrices \((X, A)\). Testing problems were of vastly different complexity, with the size of the matrix \(A \) ranging from \((14 \times 21)\) to \((67 \times 149570)\) and \((64 \times 177352)\); thus, there were up to 67 patches and up to 177352 rational choice types. Over this range of problem sizes, time required to compute \(A \) varied from split-second to several hours with the crawling algorithm. Time required to compute the larger matrices improves by a factor of about 100 using the refinement. Time required to compute \(\text{J}_N \) varied from split-second to about one minute, with problem size \((67 \times 149570)\) turning out to be the hardest. Thus, our informal assessment is that for computation of \(\text{J}_N \), increasing \(I \) (and therefore
the dimensionality of the quadratic programming problem’s objective function) is more costly than increasing H (and therefore the number of linear constraints).

For each testing problem, we computed X, A, J_N, as well as critical values and p-values using the tightened bootstrap algorithm with $R = 2000$ resamples. Results are summarized in Table 1. We find that $J_N = 0$ in only one case; that is, only in one case are the estimated choice probabilities rationalizable. However, violations of stochastic rationality are by and large not significant. We get one p-value below 10%, illustrating that in principle our test has some power, though this p-value must of course be seen in the context of the multiple hypothesis tests reported in Table 1. Notice also that the p-values seem to exhibit strong serial dependence. This is as expected – recall that any two consecutive p-values were computed from two subsets of data that overlap in seven of eight periods.

<table>
<thead>
<tr>
<th>periods</th>
<th>I</th>
<th>H</th>
<th>N</th>
<th>J_N</th>
<th>p-value</th>
<th>10% c.v.</th>
<th>5% c.v.</th>
</tr>
</thead>
<tbody>
<tr>
<td>75-82</td>
<td>50</td>
<td>42625</td>
<td>1229</td>
<td>.23</td>
<td>96%</td>
<td>3.1</td>
<td>4.0</td>
</tr>
<tr>
<td>76-83</td>
<td>67</td>
<td>149570</td>
<td>1209</td>
<td>.25</td>
<td>95%</td>
<td>2.5</td>
<td>3.3</td>
</tr>
<tr>
<td>77-84</td>
<td>55</td>
<td>97378</td>
<td>1160</td>
<td>.22</td>
<td>94%</td>
<td>2.0</td>
<td>2.5</td>
</tr>
<tr>
<td>78-85</td>
<td>49</td>
<td>61460</td>
<td>1108</td>
<td>.22</td>
<td>93%</td>
<td>1.7</td>
<td>2.3</td>
</tr>
<tr>
<td>79-86</td>
<td>43</td>
<td>38521</td>
<td>1033</td>
<td>.24</td>
<td>69%</td>
<td>.76</td>
<td>.94</td>
</tr>
<tr>
<td>80-87</td>
<td>35</td>
<td>7067</td>
<td>1033</td>
<td>.16</td>
<td>77%</td>
<td>2.1</td>
<td>3.4</td>
</tr>
<tr>
<td>81-88</td>
<td>27</td>
<td>615</td>
<td>995</td>
<td>.16</td>
<td>62%</td>
<td>.67</td>
<td>.82</td>
</tr>
<tr>
<td>82-89</td>
<td>14</td>
<td>21</td>
<td>987</td>
<td>0</td>
<td>100%</td>
<td>.24</td>
<td>.34</td>
</tr>
<tr>
<td>83-90</td>
<td>14</td>
<td>21</td>
<td>869</td>
<td>.00015</td>
<td>50%</td>
<td>2.1</td>
<td>3.5</td>
</tr>
<tr>
<td>84-91</td>
<td>16</td>
<td>63</td>
<td>852</td>
<td>.15</td>
<td>71%</td>
<td>2.6</td>
<td>3.8</td>
</tr>
<tr>
<td>85-92</td>
<td>27</td>
<td>1131</td>
<td>852</td>
<td>1.75</td>
<td>22%</td>
<td>3.1</td>
<td>4.3</td>
</tr>
<tr>
<td>86-93</td>
<td>43</td>
<td>10088</td>
<td>828</td>
<td>2.15</td>
<td>17%</td>
<td>2.9</td>
<td>3.8</td>
</tr>
<tr>
<td>87-94</td>
<td>49</td>
<td>55965</td>
<td>828</td>
<td>2.59</td>
<td>18%</td>
<td>3.5</td>
<td>4.6</td>
</tr>
<tr>
<td>88-95</td>
<td>52</td>
<td>75318</td>
<td>828</td>
<td>2.23</td>
<td>15%</td>
<td>2.8</td>
<td>3.6</td>
</tr>
<tr>
<td>89-96</td>
<td>64</td>
<td>17735</td>
<td>795</td>
<td>1.61</td>
<td>23%</td>
<td>2.7</td>
<td>3.6</td>
</tr>
<tr>
<td>90-97</td>
<td>46</td>
<td>22365</td>
<td>715</td>
<td>1.74</td>
<td>9.1%</td>
<td>1.69</td>
<td>2.2</td>
</tr>
<tr>
<td>91-98</td>
<td>39</td>
<td>9400</td>
<td>715</td>
<td>2.17</td>
<td>16%</td>
<td>2.8</td>
<td>3.5</td>
</tr>
<tr>
<td>92-99</td>
<td>21</td>
<td>225</td>
<td>715</td>
<td>2.58</td>
<td>10.2%</td>
<td>2.6</td>
<td>3.4</td>
</tr>
</tbody>
</table>

Table 1. Numerical Results of Testing Rationality Using FES data.
Figures 1 through 3 further illustrate the analysis, using the 1975-82 periods as example, i.e. they correspond to the first row in table 1. Figure 1 visualizes the relevant budget sets; figure 2 illustrates patches on the 1982 budget set; figure 3 depicts the bootstrapped distribution of J_N. There is substantial overlap across budgets, with the 1975-1982 periods generating 50 distinct “patches” and a total of 42625 choice types. The reason is that due to the 1970’s recession, budgets initially contract and then recover over this time period, generating an intricate pattern of mutual overlaps. The test statistic for 1990-97 is close to the 10% critical value. An increase of the bootstrap size to 10000 (not reported) confirms a p-value of under 10% for this test statistic seen in isolation. However, a single rejection at the 10% level is well within expectations for joint testing of many hypotheses. Our overall conclusion is that observed choice probabilities differ from rationalizable ones but not significantly so.

8. Further Applications and Extensions

8.1. Partial Identification of ν. Our setting gives rise to an identified set H_ν for distributions ν over rational choice types

$$H_\nu = \{\nu \in \Delta^{H^{-1}} : A\nu = \pi\},$$

and our main test could be interpreted as specification test with null hypothesis $H_0 : H_\nu \neq \emptyset$. Estimation of H_ν is, therefore, a natural issue. We focus on it somewhat less because the identified set is a subset of distributions over lists of choice behaviors and, at least in our application, is not immediately interpretable in terms of structural parameters of interest. This caveat might not apply to other applications, however.

In order to generate an estimand that is nonempty by construction (as will be natural estimators of it), define

$$H_\nu(\Omega) = \arg \min_{\nu \in \Delta^{H^{-1}}} \{(A\nu - \pi)' \Omega (A\nu - \pi)\},$$

This set is independent of the choice of weighting matrix Ω, and then coincides with H_ν as previously defined, iff the latter is nonempty. Else, it defines a coherent notion of “pseudo-true (partially identified) distribution of rational types” even if the data are not rationalizable.

H_ν is a singleton iff ν is point identified, which will rarely be the case in interesting applications of our framework.\(^8\) Indeed, in our application, $H_\nu(\Omega)$ is a high-dimensional, convex polyhedron even in cases where $\hat{\pi}$ is not rationalizable. That is, unlike in some applications of moment inequalities,

\(^8\)It follows from Sher et al. (2011, theorem 5) that if π has no zero components, then ν will never be point identified if $I \geq 4$.

failure of the sample criterion function to attain a minimal value of zero does not make the sample analog of the identified set a singleton.

Explicit computation of $\mathbf{H}_\nu(\Omega)$ is demanding. Our suggestion is to write

$$\mathbf{H}_\nu(\Omega) = \left\{ \nu \in \Delta^{H-1} : (A\nu - \pi)' \Omega (A\nu - \pi) - \min_{\nu \in \Delta^{H-1}} \{ (A\nu - \pi)' \Omega (A\nu - \pi) \} = 0 \right\}$$

and compute a plug-in estimator that replaces π with $\hat{\pi}$. Noting that we showed how to compute the inner minimum, computation of these estimators could utilize methods based on support vector machines as developed in current work by Bar and Molinari (2012). The estimator is clearly going to be consistent. We leave inference on \mathbf{H}_ν or elements of \mathbf{H}_ν for future research.

8.2. Partial Identification of Counterfactual Choices. The toolkit developed in this paper also allows for counterfactual analysis. At the most general level, to bound the value of any function $f(\nu)$ subject to the constraint that ν rationalizes the observed data, solve the program

$$\min_{\nu \in \mathbb{R}_+^H} / \max_{\nu \in \mathbb{R}_+^H} f(\nu) \quad \text{s.t.} \quad A\nu = \hat{\eta},$$

recalling that $\hat{\eta} = \hat{\pi}$ whenever $\hat{\pi}$ is rationalizable.\(^9\) A number of interesting applications emerges by restricting attention to linear functions $f(\nu) = e'\nu$, in which case the bounds are furthermore relatively easy to compute because the program is linear. We will briefly discuss bounding demand under a counterfactual budget, e.g. in order to measure the impact of policy intervention. This is close in spirit to bounds reported by Blundell et al. (2008; see also Cherchye et al. (2009) and references therein) as well as Manski (2007, 2012).

First, to bound components of the vector

$$\pi_J = \begin{pmatrix} \Pr(x_{1|J} \text{ is chosen from } B_J) \\ \vdots \\ \Pr(x_{I|J} \text{ is chosen from } B_J) \end{pmatrix},$$

write

$$\begin{bmatrix} A_{-J} & A_J \end{bmatrix}, \pi = \begin{bmatrix} \pi_{-J} \\ \pi_J \end{bmatrix}, \pi_J = \begin{bmatrix} \pi_{1|J} \\ \vdots \\ \pi_{I|J} \end{bmatrix}$$

\(^9\)Equivalently, one could use the previous subsection’s notation to write

$$\min / \max f(\nu) \quad \text{s.t.} \quad v \in \mathbf{H}(\nu, \Omega),$$

which is more similar to the way that similar problems are stated by Manski (e.g., Manski (2007)).
and let e_i signifies the i-th unit vector. Then we have:

Corollary 8.1. The identified region for π_J is given by

$$H(\pi_J) = \{ A_J\nu : A_{-J}\nu = \pi_{-J}, \quad \nu \geq 0 \}.$$

In particular, $\pi_{i|J}$ is bounded by

$$\pi_{i|J} \leq \pi_{i|J} \leq \pi_{i|J}$$

where

$$\pi_{i|J} = \min e_i^t A_J \nu \quad s.t. \quad A_{-J}\nu = \pi_{-J}, \quad \nu \geq 0$$

$$\pi_{i|J} = \max e_i^t A_J \nu \quad s.t. \quad A_{-J}\nu = \pi_{-J}, \quad \nu \geq 0.$$

In this paper’s application, the patches $x_{i|J}$ are not of intrinsic interest, but they might be in applications where the choice problem was discrete to begin with. Indeed, the above is the bounding problem further analyzed in Sher et al. (2011).

Next, let $\delta(J) = E[\arg \max y \in B_J u(y)]$, thus the vector $\delta(J)$ with typical component $\delta_k(J)$ denotes expected demand in choice problem B_J. Define the vectors

$$d_k(J) : = [d_k(1|J), ..., d_k(I_J|J)]$$

$$\overline{d}_k(J) : = [\overline{d}_k(1|J), ..., \overline{d}_k(I_J|J)]$$

with components

$$d_k(i|J) : = \min \{ y_k : y \in x_{i|J} \}, \quad 1 \leq i \leq I_J$$

$$\overline{d}_k(i|J) : = \max \{ y_k : y \in x_{i|J} \}, \quad 1 \leq i \leq I_J,$$

thus these vectors list minimal respectively maximal consumption of good k on the different patches within B_J. Computing $(d_k(i|J), \overline{d}_k(i|J))$ is a linear programming exercise. Then we have:

Corollary 8.2. Expected demand for good k on budget B_J is bounded by

$$\underline{\delta}_k(J) \leq \delta_k(J) \leq \overline{\delta}_k(J),$$

where

$$\underline{\delta}_k : = \min d_k(J)A_J\nu \quad s.t. \quad A_{-J}\nu = \pi_{-J}, \quad \nu \geq 0$$

$$\overline{\delta}_k : = \max \overline{d}_k(J)A_J\nu \quad s.t. \quad A_{-J}\nu = \pi_{-J}, \quad \nu \geq 0.$$
Finally, consider bounding the c.d.f. of demand $F_k(z) = \Pr(y_k \leq z)$. This quantity must be bounded in two steps. The event $(y_k \leq z)$ will in general not correspond to a precise set of patches, that is, it is not measurable with respect to (the algebra generated by) $\{x_{i|J}, \ldots, x_{I|J}\}$. An upper bound on $F_k(z)$ will derive from an upper bound on the joint probability of all patches $x_{i|J}$ s.t. $y_k \leq z$ holds for some $y \in x_{i|J}$. Similarly, a lower bound will derive from bounding the joint probability of all patches $x_{i|J}$ s.t. $y_k \leq z$ holds for all $y \in x_{i|J}$.\footnote{These definitions correspond to inner and outer measure, as well as to hitting and containment probability.} Formally, we have:

Corollary 8.3. For $k = 1, \ldots, K$ and $z \geq 0$, $F_k(z)$ is bounded from below by

$$
\min_{\nu \in \mathbb{R}^H_+} \sum_{i \in \{1, \ldots, I_J\}: \overline{d}_{k}(i|J) \leq z} A'_{i|J}\nu
$$

subject to $A_{-J}\nu = \pi_{-J}$

and from above by

$$
\max_{\nu \in \mathbb{R}^H_+} \sum_{i \in \{1, \ldots, I_J\}: \underline{d}_{k}(i|J) \leq z} A'_{i|J}\nu
$$

subject to $A_{-J}\nu = \pi_{-J}$,

where $(\underline{d}_{k}(i|J), \overline{d}_{k}(i|J))$ are defined as before.

While both the lower and the upper bound, seen as functions of z, will themselves be proper c.d.f.'s, they are not in general feasible distributions of demand for y_k. That is, the bounds are sharp pointwise but not uniformly.

When trained on this paper’s empirical application, these bounds are uncomfortably wide, motivating the search for nonparametric refinements that lead to narrower bounds without tightly constraining heterogeneity. This search, as well as the development of inference procedures for the bounds, are the subject of ongoing research that we plan to present in a companion paper. We also note that in his recent analysis of optimal taxation of labor, Manski (2012) uses the computational tools developed in this paper to find informative bounds.

8.3. Choice from Binary Sets. The methods developed in this paper, including the two extensions just discussed, immediately apply to nonparametric analysis of random discrete choice. Indeed, the initial discretization step that characterizes our analysis of a demand system is superfluous in this
case. We briefly elaborate on one salient application that has received substantive attention in the literature, namely the case where choice probabilities for pairs of options,

$$\pi_{ab} := \Pr(a \text{ is chosen from } \{a, b\})$$

are observed for all pairs of choice objects \{a, b\} drawn from some finite, universal set \(\mathcal{A}\).

Finding abstract conditions under which a set of choice probabilities \(\{\pi_{ab} : a, b \in \mathcal{A}\}\) is rationalizable has been the objective of two large, disjoint literatures, one in economics and one in operations research. See Fishburn (1992) for a survey of these literatures and Manski (2007) for a recent discussion of the substantive problem. There exists a plethora of necessary conditions, most famously Marschak’s (1960) triangle condition, which can be written as

$$\pi_{ab} + \pi_{bc} + \pi_{ca} \leq 2, \forall a, b, c \in \mathcal{A}.$$

However, while this condition is also sufficient for rationalizability if \(\mathcal{A}\) contains at most 5 elements (Dridi (1980)), conditions that are both necessary and sufficient in general have proved elusive. We do not discover abstract such conditions either, but we note that verifying rationalizability of a given collection \(\{\pi_{ab} : a, b \in \mathcal{A}\}\), as well as statistical testing of rationalizability of observed choice frequencies, is an application of our approach. To see this, define \(J = (\#\mathcal{A})(\#\mathcal{A} - 1)/2\) “budgets” that correspond to distinct pairs \(a, b \in \mathcal{A}\), and let the vector \(X\) (of length \(I = 2J\)) stack these budgets, where the ordering of budgets is arbitrary and options within a budget are ordered according to a preassigned ordering on \(\mathcal{A}\). Each rational type (and thus, column of the matrix \(A\)) then corresponds to an ordering of the elements of \(\mathcal{A}\) and can be characterized by a binary \(I\)-vector with just the same interpretation as before. An \(I\)-vector of choice probabilities \(\pi\) whose components correspond to components of \(X\) is, then, rationalizable iff

$$A\nu = \pi$$

for some \(\nu \in \Delta_{H-1}\) just as in our main analysis. All methods developed in this paper apply immediately. The matrix \(A\) has \(H = (\#\mathcal{A})!\) columns, meaning that it expands rapidly as \(\mathcal{A}\) grows. This certainly limits computational feasibility of our approach, but note that the set of orderings of elements of \(\mathcal{A}\) is trivial to characterize, hence computation time per column of \(A\) will be low.

9. Conclusion

This paper presented asymptotic theory and computational tools for completely nonparametric testing of Random Utility Models. Again, the null to be tested was that data were generated by a
RUM, interpreted as describing a heterogeneous population, where the only restrictions imposed on individuals’ behavior were “more is better” and SARP. In particular, we allowed for unrestricted, unobserved heterogeneity and stopped far short of assumptions that would recover invertibility of demand. As a result, the distribution over utility functions in the population is left (very) underidentified. We showed that specification testing of the model is possible nonetheless. The method is easily adapted to choice problems that are discrete to begin with, and one can easily impose more (or also fewer) restrictions at the individual level.

Possibilities for extensions and refinements abound. We close by mentioning some salient issues.

(1) The methods discussed in this section are computationally intensive. The proposed algorithms work for a reasonably sized problem, though it is important to make further improvements in the algorithms if one wishes to deal with a problem that is large, say in terms of the number of budgets.

(2) The J_N statistic for stochastic rationality is formulated for the case with a finite set of budgets in this subsection of the proposal. In certain applications, however, it would be necessary to deal with a continuum of budgets. Theoretically, this can be handled by considering an appropriate discretization argument (McFadden (2005)). For the proposed projection-based econometric methodology, such an extension requires evaluating choice probabilities locally over points in the space of p via nonparametric smoothing, then use the choice probability estimators in the calculation of the J_N statistic. The asymptotic theory then needs to be modified. Another approach that can mitigate the computational constraint is to consider a partition of the space of p such that $\mathbf{R}_+^K = P_1 \cup P_2 \cdots \cup P_M$. Suppose we calculate the J_N statistic for each of these partitions. Given the resulting M statistics, say J_N^1, \cdots, J_N^M, we can consider their function such as $J_N^{\text{max}} := \max_{1 \leq m \leq M} J_N^m$. Or, alternatively, their weighted average may be used. These extensions and their formal statistical analysis are of practical interest.

(3) Related to (2), in certain applications it might be desirable to control for observable covariates to guarantee the homogeneity of the distribution of unobserved heterogeneity. Once again, this requires incorporating nonparametric smoothing in estimating choice probabilities, then averaging the corresponding J_N statistics over the covariates. This extension will be pursued.

(4) The econometric techniques outlined here can be potentially useful in much broader contexts. Again, our proposed hypothesis test can be regarded as specification test for a moment inequalities model. The proposed statistic J_N is an inequality analogue of goodness-of-fit statistics such as
Hansen’s (1982) overidentifying restrictions test statistic. While there are other proposals for specification testing in moment inequality models (see, e.g., Andrews and Guggenberger (2009), Andrews and Soares (2010), Bugni (2010), and Guggenberger, Hahn and Kim (2007)), the current approach provides an alternative and convenient procedure. As we discussed in Section 1, our procedure applies to ‘indirect moment inequality models’ as well. This can be useful in other applications, for example in any setting where theoretical restrictions inform the \(V \)-representation of a cone, meaning that its \(H \)-representation may not be available in practice.

10. Appendix A: Proofs

Proof of Proposition 4.1. We begin with some preliminary observations. Throughout this proof, \(c(B_i) \) denotes the object actually chosen from budget \(B_i \).

(i) If there is a choice cycle of any finite length, then there is a cycle of length 2 or 3 (where a cycle of length 2 is a WARP violation). To see this, assume there exists a length \(N \) choice cycle \(c(B_i) \succ c(B_j) \succ c(B_k) \succ \ldots \succ c(B_i) \). If \(c(B_k) \succ c(B_i) \), then a length 3 cycle has been discovered. Else, there exists a length \(N-1 \) choice cycle \(c(B_i) \succ c(B_j) \succ c(B_k) \succ \ldots \succ c(B_i) \). The argument can be iterated until \(N = 4 \).

(ii) Call a length 3 choice cycle **irreducible** if it does not contain a length 2 cycle. Then a choice pattern is rationalizable iff it contains no length 2 cycles and also no irreducible length 3 cycles. (In particular, one can ignore reducible length 3 cycles.) This follows trivially from (i).

(iii) Let \(J = 3 \) and \(M = 1 \), i.e. assume there are three budgets but two of them fail to intersect. Then any length 3 cycle is reducible. To see this, assume w.l.o.g. that \(B_1 \) is below \(B_3 \), thus \(c(B_3) \succ c(B_1) \) by monotonicity. If there is a choice cycle, we must have \(c(B_1) \succ c(B_2) \succ c(B_3) \). \(c(B_1) \succ c(B_2) \) implies that \(c(B_2) \) is below \(B_1 \), thus it is below \(B_3 \). \(c(B_2) \succ c(B_3) \) implies that \(c(B_3) \) is below \(B_2 \). Thus, there is a length 2 cycle in \((B_2, B_3) \).

We are now ready to prove the main result. The nontrivial direction is “only if,” thus it suffices to show the following: If choice from \((B_1, \ldots, B_{J-1}) \) is rationalizable but choice from \((B_1, \ldots, B_J) \) is not, then choice from \((B_{M+1}, \ldots, B_J) \) cannot be rationalizable. By observation (ii), if \((B_1, \ldots, B_J) \) is not rationalizable, it contains either a 2-cycle or an irreducible 3-cycle. Because choice from all triplets within \((B_1, \ldots, B_{J-1}) \) is rationalizable by assumption, it is either the case that some \((B_i, B_J) \) constitutes a 2-cycle or that some triplet \((B_i, B_k, B_J) \), where \(i < k \) w.l.o.g., reveals an irreducible choice cycle. In the former case, \(B_i \) must intersect \(B_J \), hence \(i > M \), hence the conclusion. In the latter case, if \(k \leq M \), the choice cycle must be a 2-cycle in \((B_i, B_k) \), contradicting rationalizability of
If \(i \leq M \), the choice cycle is reducible by observation (iii). Thus, \(i > M \), hence the conclusion. \(\square \)

Proof of Theorem 5.1. Recall that the constraint set for the choice probability vector \(\pi \) is, by the Minkowski-Weyl theorem,

\[
C = \{ A\nu : \nu \geq 0 \} = \{ t \in \mathbb{R}^I : Bt \leq 0 \}.
\]

For later use, let \(b'_k \) denote the \(k \)-th row vector of \(B \), with \(1 \leq k \leq m \). For a \(\tau > 0 \), define the \('\tau\)-tightened’ version of \(C \) as

\[
C_\tau := \{ A\nu | \nu \geq \tau 1_H \}.
\]

Letting \(\nu_\tau = \nu - \tau 1_H \), we have

\[
C_\tau = \{ A\nu | \nu_\tau \geq 0 \} = \{ A[\nu_\tau + \tau 1_H] | \nu_\tau \geq 0 \} = C \oplus \tau A 1_H = \{ t : t - \tau A 1_H \in C \}
\]

where \(\oplus \) signifies Minkowski sum. Define

\[
\phi = -BA 1_H.
\]

Using the \(H \)-representation of \(C_\tau \),

\[
C_\tau = \{ t : B(t - \tau A 1_H) \leq 0 \} = \{ t : Bt \leq -\tau \phi \}.
\]

Also define

\[
\Phi := -BA
\]

\[
= \begin{bmatrix} b'_1 \\ \vdots \\ b'_m \end{bmatrix} [a_1, \cdots , a_H]
\]

\[
= \{ \Phi_{kh} \}.
\]
where \(\Phi_{kh} = b'_k a_h, 1 \leq k \leq m, 1 \leq h \leq H \) and let \(e_h \) be the \(h \)-th standard unit vector in \(\mathbb{R}^H \). Since \(e_h \geq 0 \), the \(V \)-representation of \(C \) implies that \(Ae_h \in C \), and thus

\[
BAe_h \leq 0
\]

by its \(H \)-representation. Therefore

\[
(10.1) \quad \Phi_{kh} = -e'_k BAe_h \geq 0, \quad 1 \leq k \leq m, 1 \leq h \leq H.
\]

Write \(\phi = (\phi_1, ..., \phi_m)' \). We now show that \(\phi_k \neq 0 \) for all \(1 \leq k \leq m \). To see it, note

\[
\phi = \Phi_1 H = \begin{bmatrix}
\sum_{h=1}^H \Phi_{1h} \\
\vdots \\
\sum_{h=1}^H \Phi_{mh}
\end{bmatrix}
\]

But unless we have the case of \(\text{rank}(B) = 1 \) (in which case the proof is trivial) it cannot be that \(a_h \in \{x : b'_k x = 0\} \) for all \(j \) as some of the \(a_j \)'s must belong to a facet of the cone \(C \) corresponding to \(b'_k, k' \neq k \). For each \(k \), therefore \(\Phi_{kh} = b'_k a_h \) is nonzero at least for one \(h, 1 \leq h \leq H \). Since (10.1) implies that all of \(\{\Phi_{kh}\}_{h=1}^H \) are non-negative, we conclude that

\[
\phi_k = \sum_{h=1}^H \Phi_{kh} > 0
\]

for all \(k \). We now have

\[
C_\tau = \{t : Bt \leq -\tau \phi\}, \quad \phi > 0
\]

where the strict vector inequality is meant to hold element-by-element. In sum, our procedure is equivalent to comparing

\[
J_N = \min_{t \in \mathbb{R}^I : Bt \leq 0} N[\hat{\pi} - t]'\Omega[\hat{\pi} - t]
\]

with the \(1 - \alpha \) quantile of the distribution of

\[
\tilde{J}_N(\tau_N) = \min_{t \in \mathbb{R}^I : Bt \leq -\tau_N \phi} N[\tilde{\eta}_{\tau_N} - t]'\Omega[\tilde{\eta}_{\tau_N} - t]
\]

with \(\phi \in \mathbb{R}_+^m \), where

\[
\tilde{\eta}_{\tau_N} = \hat{\eta}_{\tau_N} + \frac{1}{\sqrt{N}} N(0, \hat{S}),
\]

\[
\hat{\eta}_{\tau_N} = \arg \min_{t \in \mathbb{R}^I : Bt \leq -\tau_N \phi} N[\hat{\pi} - t]'\Omega[\hat{\pi} - t].
\]
In the rest of the proof we use the following definition and notation. For m dimensional vectors $a = (a_1, ..., a_m)'$ and $b = (b_1, ..., b_m)'$, we use the notation $\min(a, b)$ to signify the vector $(\min(a_1, b_1), ..., \min(a_m, b_m))'$. Suppose B is $m \times I$ dimensional and $\text{rank}(B) = \ell$. Define an $\ell \times p$ matrix K such that KB is a matrix whose rows consist of a basis of the row space $\text{row}(B)$. Also let M be an $(I - \ell) \times I$ matrix whose rows form an orthonormal basis of $\text{ker}B = \text{ker}(KB)$, and define $P = (KB_M)$. Finally, let $\hat{g} = B\hat{\pi}$ and $\hat{h} = M\hat{\pi}$. Then

$$J_N = \min_{Bt \leq 0} N \left[\left(KB \right)(\hat{\pi} - t) \right]'P^{-1'}\Omega P^{-1} \left[\left(KB \right)(\hat{\pi} - t) \right]$$

Let

$$U_1 = \left\{ \left(\begin{array}{c} \gamma \\ h \end{array} \right) : \gamma = Bt, h = Mt, Bt \leq 0, t \in \mathbb{R}^I \right\}$$

and

$$U_2 = \left\{ \left(\begin{array}{c} \gamma \\ h \end{array} \right) : \gamma \leq 0, h \in \mathbb{R}^{I-\ell} \right\}.$$

Obviously $U_1 \subset U_2$. Moreover, $U_2 \subset U_1$ holds. To see this, let $\left(\begin{array}{c} \gamma^* \\ h^* \end{array} \right)$ be an arbitrary element of U_2. Without loss of generality, we assume that there is no redundant inequality in $Bt \leq 0$; otherwise we can simply eliminate redundant inequalities from the system. Then we can always find $t^* \in \mathbb{R}^I$ such that $\gamma^* = Bt^*$. Define

$$t^{**} := t^* + M'h^* - M'Mt^*$$

then $Bt^{**} = Bt^* = \gamma^*$ and $Mt^{**} = Mt^* + MM'h^* - MM'Mt^* = h^*$, therefore $\left(\begin{array}{c} \gamma^* \\ h^* \end{array} \right)$ is an element of U_1 as well. Consequently,

$$U_1 = U_2.$$

This allows us to make use of the change the variables $\gamma = Bt$ and $h = Mt$ in the last expression for J_N:

$$J_N = \min_{\gamma \leq 0, h \in \mathbb{R}^{I-\ell}} N \left(K(\hat{\gamma} - \gamma) \right)'P^{-1'}\Omega P^{-1} \left(K(\hat{\gamma} - \gamma) \right)$$

Define

$$T(x, y) = \left(\begin{array}{c} Kx \\ y \end{array} \right)'P^{-1'}\Omega P^{-1} \left(\begin{array}{c} Kx \\ y \end{array} \right), \quad x \in \mathbb{R}^p, y \in \mathbb{R}^{I-\ell},$$
then letting
\[T(x) := \min_{y \in \mathbb{R}^{I-t}} T(x, y), \quad s(x) := \min_{\gamma \leq 0} T(x - \gamma) \]
we can write
\[
J_N = N \min_{\gamma \leq 0} T(\hat{g} - \gamma) \\
= N s(\hat{g}) \\
= s(\sqrt{N}\hat{g}).
\]
Recall that \(\hat{\eta}_N \) solves
\[
\min_{\eta \leq -\tau N \phi} [\hat{\pi} - \eta]^{\top} \Omega [\hat{\pi} - \eta] = \min_{\eta \leq -\tau N \phi} T(\hat{g} - B\eta, \hat{h} - M\eta),
\]
therefore due to the same change of variables argument as above, \(\hat{g}_N := B\hat{\eta}_N \) and \(\hat{h}_N := M\hat{\eta}_N \) solve
\[
\min_{\gamma \leq -\tau N \phi, h \in \mathbb{R}^{I-t}} T(\hat{g} - \gamma, \hat{h} - \gamma).
\]
On the other hand, rewriting this expression, we have
\[
\min_{\gamma \leq -\tau N \phi, h \in \mathbb{R}^{I-t}} T(\hat{g} - \gamma, \hat{h} - \gamma) = \min_{\gamma \leq -\tau N \phi} T(\hat{g} - \gamma)
\]
which is uniquely solved by \(\hat{\beta}_N := \min(K\hat{g}, -\tau K\phi). \) On the other hand, \(\beta = K\gamma, \) so \(\hat{\beta}_N = K\hat{\eta}_N. \) Therefore we have
\[
K\hat{\eta}_N = K \min(\hat{g}, -\tau \phi).
\]
Using this and defining \(\xi \sim N(0, \hat{S}) \) and \(\zeta = B\xi, \)
\[
\tilde{J}_N(\tau_N) \sim \min_{Bt \leq -\tau N \phi} N \left[\begin{pmatrix} K B \\ M \end{pmatrix} (\hat{\eta}_N + N^{-1/2}\xi - t) \right]^{\prime} P^{-1}\Omega P^{-1} \left[\begin{pmatrix} K B \\ M \end{pmatrix} (\hat{\eta}_N + N^{-1/2}\xi - t) \right] \\
= \min_{g \leq -\tau N \phi, y \in \mathbb{R}^{I-t}} N \left(K(\hat{g} + N^{-1/2}\zeta - \gamma) \right)^{\prime} P^{-1}\Omega P^{-1} \left(K(\hat{g} + N^{-1/2}\zeta - \gamma) \right) \\
= N \min_{\gamma \leq -\tau N \phi} T(\min(\hat{g}, -\tau \phi) + N^{-1/2}\zeta - \gamma).
Let $\gamma^\tau = \gamma + \tau N \phi$ in the above and we obtain
\[
\tilde{J}_N(\tau_N) \sim N \min_{\gamma^\tau \leq 0} T(\min(\hat{g} + \tau \phi, 0) + N^{-1/2} \zeta - \gamma^\tau) \\
= Ns(\min(\hat{g} + \tau \phi, 0) + N^{-1/2} \zeta) \\
= s(\sqrt{N} \tau_N \min(\tau_N^{-1} \hat{g} + \phi, 0) + \zeta)
\]

Define functions $\varphi_k(\xi) := \sqrt{k} \tau_k \max(\xi - \phi, 0), \xi \in \mathbb{R}, k = 1, 2, \ldots$. Also, let $\varphi_{+\infty}(\xi) = \max(\xi - \phi, 0) \cdot +\infty$ with the convention that $0 \cdot +\infty = 0$. These functions satisfy Assumptions GMS 1, 3 and 7 of AS10.

Using these definitions, we can write
\[
\tilde{J}_N(\tau_N) = s(-\varphi_N(-\tau_N^{-1} \hat{g}) + \zeta).
\]

Also define
\[
\tilde{J}_{k,N}(\tau_N) := s(-\varphi_k(-\tau_N^{-1} \hat{g}) + \zeta)
\]
for $k \in \mathbb{N} \cup \{+\infty\}$. Moreover, let $\hat{c}_{1,1-\alpha}$ be the $1-\alpha$ quantile of $\tilde{J}_{k,N}(\tau_N)$ for $k \in \mathbb{N} \cup \{+\infty\}$ as well.

Without loss of generality, let $\tau_1 = 1$ and suppose $N \tau_N$ increases monotonically in N. Then we have
\[
(10.2) \quad \hat{c}_{1,1-\alpha} \leq \hat{c}_{1-\alpha,1-\alpha} \leq \hat{c}_{+\infty,1-\alpha}.
\]

Now we invoke Theorem 1 of AS10. Their Assumptions 1-3 hold for the function s defined above if signs are adjusted appropriately as our formulae deal with negativity constraints whereas AS10 is formulated for positivity constraints. Assumption 3 of AS10 also holds by noting that $s(g) = 0$ iff $g \leq 0$ provided $g = B \pi$ for some $\pi \in \mathbb{R}^I$. Assumptions GMS 2 and GMS 4 of AS10 are concerned with their thresholding parameter κ for the k-th moment inequality, and by letting $\kappa_N = N^{1/2} \tau_N \phi_k$, the former holds by the condition $\sqrt{N} \tau_N \uparrow \infty$ and the latter by $\tau_N \downarrow 0$. Therefore we conclude
\[
(10.3) \quad \liminf_{N \to \infty} \inf_{F \in \mathcal{F}} \Pr\{J_N \leq \hat{c}_{1,1-\alpha}\} = \liminf_{N \to \infty} \inf_{F \in \mathcal{F}} \Pr\{J_N \leq \hat{c}_{+\infty,1-\alpha}\} = 1 - \alpha
\]
Combining (10.2) and (10.3) the desired conclusion follows.

11. Appendix B: Algorithms for Computing A

This appendix algorithms for computation of A. The first algorithm is a brute-force approach that generates all possible choice patterns and then verifies which of these are rationalizable. The second one avoids the construction of the vast majority of possible choice patterns because it checks for rationality along the way as choice patterns are constructed. The third algorithm uses proposition 1. To give a sense of the algorithms’ performance, the matrix A corresponding to the 1975-1982
data, which is of size $[50 \times 42625]$ and cannot be computed with our implementation of algorithm 1, computes in about 2 hours with our implementation of algorithm 2, and (after suitable rearrangement of budgets) in about 2 minutes with our implementation of algorithm 3. All implementations are in MATLAB and are available from the authors. The instruction to FW-test a sequence refers to use of the Floyd-Warshall algorithm to detect choice cycles. We use the FastFloyd implementation due to...

Algorithm 1: Brute Force

This algorithm is easiest described verbally. First generate a matrix A^{max} that contains all logically possible choice patterns. To do so, let E^i denote the set of unit vectors in R^i and observe that a stacked vector $(a'_1, \ldots, a'_J)'$ is a column of A^{max} iff $(a_1, \ldots, a_J) \in E^{I_1} \times \ldots \times E^{I_J}$. It is then easy to construct A^{max} by looping. Next, generate A by FM-testing every column of A^{max} and retaining only columns that pass.

Algorithm 2: Decision Tree Crawling

An intuition for this algorithm is as follows. All possible choice patterns can be arranged on one decision tree, where the first node refers to choice from B_1 and so forth. The tree is systematically crawled. Exploration of any branch is stopped as soon as a choice cycle is detected. Completion of a rationalizable choice pattern is detected when a terminal node has been reached.

Pseudo-code for this algorithm follows.

1. Initialize $m_1 = \ldots = m_J = 1$.
2. Initialize $l = 2$.
3. Set $c(B_1) = m_1, \ldots, c(B_l) = m_l$. **FW-test** $(c(B_1), \ldots, c(B_l))$.
4. If no cycle is detected, move to step 5. Else:
 4a. If $m_l < I_l$, set $m_l = m_l + 1$ and return to step 3.
 4b. If $m_l = I_l$ and $m_{l-1} < I_{l-1}$, set $m_l = 1$, $m_{l-1} = m_{l-1} + 1$, $l = l - 1$, and return to step 3.
 4c. If $m_l = I_l$, $m_{l-1} = I_{l-1}$, and $m_{l-2} < I_{l-2}$, set $m_l = m_{l-1} = 1$, $m_{l-2} = m_{l-2} + 1$, $l = l - 2$, and return to step 3.
 (\ldots)
 4z. Terminate.
5. If $l < J$, set $l = l + 1$, $m_l = 1$, and return to step 3.
6. Extend A by the column $[m_1, \ldots, m_J]'$. Also:
6a. If \(m_J < I_J \), set \(m_J = m_J + 1 \) and return to step 3.
6b. If \(m_J = I_J \) and \(m_{J-1} < I_{J-1} \), set \(m_J = 1 \), \(m_{J-1} = m_{J-1} + 1 \), \(l = J - 1 \), and return to step 3.
6c. If \(m_l = I_l \), \(m_{l-1} = I_{l-1} \), and \(m_{l-2} < I_{l-2} \), set \(m_l = m_{l-1} = 1 \), \(m_{l-2} = m_{l-2} + 1 \), \(l = l - 2 \), and return to step 3.

(...)
6z. Terminate.

Algorithm 3: Refinement using Proposition 4.1

Let budgets be arranged s.t. \((B_1, ..., B_M)\) do not intersect \(B_J\); for exposition of the algorithm, assume \(B_J\) is above these budgets. Then pseudo-code for an algorithm that exploits proposition 1 (calling either of the preceding algorithms for intermediate steps) is as follows.

1. Use brute force or crawling to compute a matrix \(A_{M+1 \rightarrow J-1} \) corresponding to budgets \((B_{M+1}, ..., B_J)\), though using the full \(X \) corresponding to budgets \((B_1, ..., B_J)\).\(^{11}\)

2. For each column \(a_{M+1 \rightarrow J-1} \) of \(A_{M+1 \rightarrow J-1} \), go through the following steps:
 2.1 Compute (by brute force or crawling) all vectors \(a_{1 \rightarrow M} \) s.t. \((a_{1 \rightarrow M}, a_{M+1 \rightarrow J-1})\) is rationalizable.
 2.2 Compute (by brute force or crawling) all vectors \(a_J \) s.t. \((a_{M+1 \rightarrow J-1}, a_J)\) is rationalizable.
 2.3 All stacked vectors \((a_{1 \rightarrow M}', a_{M+1 \rightarrow J-1}', a_J')\) are valid columns of \(A \).

References

\(^{11}\)(This matrix has more rows than an \(A \) matrix that is only intended to apply to choice problems \((B_{M+1}, ..., B_J)\).)
Berry, S., A. Gandhi and P. Haile (2011): “Connected Substitutes and Invertibility of Demand,”
Manuscript.

Block, H., and J. Marschak (1960): “Random Orderings and Stochastic Theories of Responses,”
in Contributions to Probability and Statistics, ed. by I. Olkin, S. Ghurye, H. Hoeffding, H. Madow,

Blundell, R., M. Browning, and I. Crawford (2003): “Nonparametric Engel Curves and Re-
using revealed preference inequalities,” Manuscript.

Canay, I.A. (2010): “EL Inference for Partially Identified Models: Large Deviations Optimality
and Bootstrap Validity,” Journal of Econometrics, 156, 408-425.

Approach to Demand,” Quantifying Consumer Preferences, ed. by D. Slottje. Emerald Books.

Statistics, 25, 573–578.

Epstein, L., and A. Yatchew (1985): “Non-parametric hypothesis testing procedures and
applications to demand analysis,” Journal of Econometrics, 30, 149–169.

of Mathematical Psychology, 18, 52–72.

Fishburn, P.C. (1992): “Induced Binary Probabilities and the Linear Ordering Polytope: A

Gourieroux, C., A. Holly, and A. Monfort (1982): “Likelihood Ratio Test, Wald Test, and
Kuhn-Tucker Test in Linear Models with Inequality Constraints on the Regression Parameters,”

Cowles Foundation for Research in Economics, Yale University, New Haven, CT-06520.

E-mail address: yuichi.kitamura@yale.edu

Department of Economics, Cornell University, Ithaca, NY-14853.

E-mail address: stoye@cornell.edu
Figure 1. Budget Planes: 1975-1982

services

nondurables

food
Figure 2. Patches on the 1982 budget.
Figure 3. Bootstrapped Distribution of Test Statistics: 1975-1982